12 research outputs found

    Lithium-ion and beyond: safer alternatives

    Get PDF

    Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Advanced ionic liquid-based electrolytes are herein characterized for application in high performance lithium-ion batteries. The electrolytes based on either N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr(14)TFSI), N-butyl-N-methylpyrrolidinium bis(fluoro-sulfonyl) imide (Pyr(14)FSI), N-methoxy-ethyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl) imide (Pyr(12O1)TFSI) or N-N-diethyl-N-methyl-N-(2methoxyethyl) ammonium bis(trifluoromethanesulfonyl) imide (DEMETFSI) ionic liquids and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt are fully characterized in terms of ionic conductivity, viscosity, electrochemical properties and lithium-interphase stability. All IL-based electrolytes reveal suitable characteristics for application in batteries. Lithium half-cells, employing a LiFePO4 polyanionic cathode, show remarkable performance. In particular, relevant efficiency and rate-capability are observed for the Py14FSI-LiTFSI electrolyte, which is further characterized for application in a lithium-ion battery composed of the alloying Sn-C nanocomposite anode and LiFePO4 cathode. The IL-based full-cell delivers a maximum reversible capacity of about 160 mA h g(-1) (versus cathode weight) at a working voltage of about 3 V, corresponding to an estimated practical energy of about 160 W h kg(-1). The cell evidences outstanding electrochemical cycle life, i.e., extended over 2000 cycles without signs of decay, and satisfactory rate capability. This performance together with the high safety provided by the IL-electrolyte, olivine-structure cathode and Li-alloying anode, makes this cell chemistry well suited for application in new-generation electric and electronic devices

    Investigation of the electrochemical features of carbon-coated TiO2 anode for application in lithium-ion battery using high voltage LiNi0.5Mn1.5O4 spinel cathode

    No full text
    In this paper we propose a carbon-coated, nano-sized TiO2 anode for application in lithium-ion batteries. The lithiation-delithiation process characteristic of this mixed anatase/rutile material has been investigated in detail, in order to define the optimal operating voltage range and to further enhance the electrode cycle life. Ex-situ x-ray diffraction measurements demonstrate that the rutile phase becomes electrochemically inactive toward lithium intercalation after the first cycle and remains inactive by cycles. The TiO2 electrochemical behavior is studied by means of various techniques, including galvanostatic cycling and potentiodynamic cycling with galvanostatic acceleration. We show that the combination of the TiO2 anode with a high-voltage, LiNi0.5Mn1.5O4 spinel cathode results in an advanced li-ion battery able to exchange reversibly a capacity higher than 100 mAh/g for over 70 cycles at the high rate of 1C. Considering an average working voltage of about 2.9 V, the theoretical energy content of the cell here disclosed is about 300 Wh kg-1. Taking into account the energy content and high safety level of the full cell, due to the use of a TiO2-based electrode, by operating at a voltage value well far from the one associated to the common electrolyte decomposition, i.e. about 1.7 V, we may propose the anode here studied as suitable material for advanced energy storage systems

    All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte

    No full text
    The investigation of a lithium-carbon composite (Li–C) anode for application in all-solid-state battery, based on (Li2S)0.75-(P2S5)0.25 glassy thio-LISICON electrolyte (Li2S-P2S5) is herein reported. The Li–C anode material is prepared by a mechanochemical, single step synthesis procedure. The Li–C/electrolyte interface is characterized in terms of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic cycling in comparison with lithium metal, in order to evaluate the improvements in terms of resistance and lithium stripping deposition ability. Li–C anode powder is pressed into a pellet together with the Li2S-P2S5 electrolyte and Li2ZrO3-coated, Li[Ni0.8Co0.15Al0.05]O2 cathode powder (NCA-LZO), to form a new type of solid-state battery operating at room temperature. The Li–C/Li2S-P2S5/NCA-LZO battery shows remarkable cycling performance under galvanostatic conditions, particularly if compared to a more conventional configuration employing lithium metal as the anode. In addition, the all solid-state battery is characterized at various current densities, showing satisfactory rate capability. Under long term-cycling condition, performed at low current and prolonged to more than 250 days, the cell shows a stability over 100 cycles without fading. This is considered a remarkable result suggesting the solid-state cell here studied as suitable candidate for efficient and safe energy storage

    All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: Benefits on anode kinetics

    Get PDF
    Lithium-sulfur (Li-S) batteries are promising candidates for next generation electrical energy storage devices due to their high specific energy. Despite intense research, there are still a number of technical challenges in developing a high performance Li-S battery. To elucidate the issues, an all solid-state Li-S battery was fabricated using Li3PS4 solid electrolyte. Most of the theoretical capacity of sulfur, 1600 mAhg−1 was attained in the initial discharge-charge cycles with a high coulombic efficiency approaching 99%. To verify the benefit of the solid state electrolyte, galvanostatic stripping-deposition tests were also carried out on a symmetrical Li/Li cell and compared with those of a liquid electrolyte (1M- lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) in a mixture of 1,3-dioxolane (DOL)-diethoxyethane (DEE)). The kinetics and thermodynamics of the solid-state cell are discussed from the viewpoint of the charge transfer processes. This study demonstrates both the merits and drawbacks of using the solid sulfide electrolyte in a Li-S battery and facilitates the further improvement of this important high energy storage device

    All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: Benefits on anode kinetics

    Get PDF
    Lithium-sulfur (Li-S) batteries are promising candidates for next generation electrical energy storage devices due to their high specific energy. Despite intense research, there are still a number of technical challenges in developing a high performance Li-S battery. To elucidate the issues, an all solid-state Li-S battery was fabricated using Li3PS4 solid electrolyte. Most of the theoretical capacity of sulfur, 1600 mAhg−1 was attained in the initial discharge-charge cycles with a high coulombic efficiency approaching 99%. To verify the benefit of the solid state electrolyte, galvanostatic stripping-deposition tests were also carried out on a symmetrical Li/Li cell and compared with those of a liquid electrolyte (1M- lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) in a mixture of 1,3-dioxolane (DOL)-diethoxyethane (DEE)). The kinetics and thermodynamics of the solid-state cell are discussed from the viewpoint of the charge transfer processes. This study demonstrates both the merits and drawbacks of using the solid sulfide electrolyte in a Li-S battery and facilitates the further improvement of this important high energy storage device

    A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution

    No full text
    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel–Tammann–Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 408C, revealing a very stable capacity of about 140 mAhg-1 and retention above 99% over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles
    corecore