32 research outputs found

    H-NS Antagonism in Shigella flexneri by VirB, a Virulence Gene Transcription Regulator That Is Closely Related to Plasmid Partition Factors

    No full text
    The VirB protein of Shigella flexneri is a positive regulator of the major virulence operons of this enteroinvasive intracellular pathogen. VirB resembles no other transcription factor but is strongly homologous to plasmid partition proteins. We found that the binding of the VirB protein to the promoter region of the icsB virulence gene induced hypersensitivity to cleavage by DNase I over a region to which the H-NS repressor protein binds and completely abolished the protection of this sequence from DNase I by H-NS. In the absence of H-NS, the VirB protein had no additive effect on the ability of the icsB promoter to form an open transcription complex, indicating that VirB is not involved in the recruitment of RNA polymerase to the promoter or in open complex formation. Similarly, VirB did not stimulate promoter function in an in vitro transcription assay but acted as an antagonist of H-NS-mediated repression. A sequence located upstream of the icsB promoter and related to cis-acting elements involved in plasmid partitioning was required for promoter derepression by VirB. Alterations to one heptameric motif within this DNA sequence attenuated VirB binding and derepression of icsB transcription

    Prostacyclin receptor gene expression

    No full text
    Prostacyclin plays a central role in haemostasis, inflammation and nociception. However, the factors regulating expression of the prostacyclin receptor (IP) gene in humans, or in other species, have not been identified. Herein it was sought to identify the key trans-acting factors and cis-acting elements regulating IP expression in the megakaryoblastic human erythroleukemia (HEL) 92.1.7 and the vascular endothelial EA.hy 926 cell lines. Using deletion and genetic reporter analyses, the essential core promoter, termed PrmIP, was localized to -1022 to -895 proximal to the transcription initiation site, while an upstream repressor region, localized to -1502 to -1271, was also identified. Bioinformatic analysis revealed evolutionary conserved Sp1, PU.1 and Oct-1 sites within the core PrmIP and disruption of those elements each led to substantial reductions in PrmIP-directed gene expression in both HEL and EA.hy 926 cells. Electrophoretic mobility shift assays (EMSAs) and supershift assays established that Sp1, PU.1 and Oct-1 can bind to elements within the core promoter in vitro while chromatin immunoprecipitiation (ChIP) assays confirmed their specific binding to chromatin in vivo. Furthermore, combination mutations of the Sp1, PU.1 and Oct-1 elements revealed that they act independently to co-regulate basal transcription of the IP gene while ectopic expression of each of the trans-acting factors led to substantial increases in PrmIP-directed gene expression and IP mRNA expression in both HEL and EA.hy 926 cells. While EMSA and antibody supershift assays established that the Ets family member Fli1, but not Ets-1, is capable of binding to the PU.1 element within PrmIP in vitro, ChIP analysis established that neither Fli1 nor Ets-1 bind to that element in vivo. Collectively, these data provide critical insights into the transcriptional regulation of the IP gene in human megakaryocytic and endothelial cells, identifying Sp1, PU.1 and Oct-1 as the critical factors involved in its basal regulation in humans.Science Foundation IrelandHealth Research BoardOther funderThe Wellcome Trustot,ke,-SB02/09/201

    Prostacyclin receptor gene expression

    No full text
    Prostacyclin plays a central role in haemostasis, inflammation and nociception. However, the factors regulating expression of the prostacyclin receptor (IP) gene in humans, or in other species, have not been identified. Herein it was sought to identify the key trans-acting factors and cis-acting elements regulating IP expression in the megakaryoblastic human erythroleukemia (HEL) 92.1.7 and the vascular endothelial EA.hy 926 cell lines. Using deletion and genetic reporter analyses, the essential core promoter, termed PrmIP, was localized to -1022 to -895 proximal to the transcription initiation site, while an upstream repressor region, localized to -1502 to -1271, was also identified. Bioinformatic analysis revealed evolutionary conserved Sp1, PU.1 and Oct-1 sites within the core PrmIP and disruption of those elements each led to substantial reductions in PrmIP-directed gene expression in both HEL and EA.hy 926 cells. Electrophoretic mobility shift assays (EMSAs) and supershift assays established that Sp1, PU.1 and Oct-1 can bind to elements within the core promoter in vitro while chromatin immunoprecipitiation (ChIP) assays confirmed their specific binding to chromatin in vivo. Furthermore, combination mutations of the Sp1, PU.1 and Oct-1 elements revealed that they act independently to co-regulate basal transcription of the IP gene while ectopic expression of each of the trans-acting factors led to substantial increases in PrmIP-directed gene expression and IP mRNA expression in both HEL and EA.hy 926 cells. While EMSA and antibody supershift assays established that the Ets family member Fli1, but not Ets-1, is capable of binding to the PU.1 element within PrmIP in vitro, ChIP analysis established that neither Fli1 nor Ets-1 bind to that element in vivo. Collectively, these data provide critical insights into the transcriptional regulation of the IP gene in human megakaryocytic and endothelial cells, identifying Sp1, PU.1 and Oct-1 as the critical factors involved in its basal regulation in humans.Science Foundation IrelandHealth Research BoardOther funderThe Wellcome Trustot,ke,-SB02/09/201

    Prostacyclin receptor gene regulation by estrogen

    Get PDF
    Prostacyclin and the prostacyclin receptor (IP) are implicated in mediating many of the atheroprotective effects of estrogen in both humans and in animal models but through unknown mechanisms. Hence, herein the influence of estrogen on IP gene expression in endothelial EA.hy926, human erythroleukemia 92.1.7 and primary human (h) aortic smooth muscle (1o hAoSM) cells was investigated. Estrogen increased hIP mRNA levels, promoter (PrmIP)-directed reporter gene expression and cicaprost-dependent cAMP generation in all cell types, effects that were abrogated by actinomycinD and the general estrogen receptor (ER)-α/ERβ antagonist ICI 182,780. Furthermore, the ERα-selective agonist 4,4’,4”-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), but not the ERβ-agonist 2,3-bis(4-Hydroxyphenly)-propionitrile, significantly increased hIP mRNA and PrmIP-directed gene expression. Deletional and mutational analysis of PrmIP uncovered an evolutionary conserved estrogen-response element (ERE) while electrophoretic mobility shift, antibody-supershift and chromatin immunoprecipitations assays confirmed the direct binding of ERα, but not ERβ, to PrmIP both in vitro and in vivo. Moreover, immunofluorescence microscopy corroborated that estrogen and PPT increased hIP expression in 1o hAoSMCs. In conclusion, the hIP gene is directly regulated by estrogen that largely occurs through an ERα-dependent transcriptional mechanism and thereby provides critical insights into the role of prostacyclin/hIP in mediating the atheroprotective effects of estrogen within the human vasculature.Science Foundation IrelandHealth Research Boardot,ke, -SB01/09/201

    Role of CX3CR1 Receptor in Monocyte/Macrophage Driven Neovascularization

    Get PDF
    Monocyte/Macrophages are implicated in initiation of angiogenesis, tissue/organ perfusion and atherosclerosis biology. We recently showed that chemokine receptor CX3CR1 is an essential regulator of monocyte/macrophage derived smooth muscle cell differentiation in the vessel wall after injury. Here we hypothesised the contribution of CX3CR1- CX3CL1 interaction to in vivo neovascularization and studied the functional consequences of genetic and pharmacologic targeting of CX3CR1 in formation, maturation and maintenance of microvascular integrity. Cells functionally deficient in CX3CR1 lacked matrix tunnelling and tubulation capacity in a 3D Matrigel assay. These morphogenic and cytokinetic responses were driven by CX3CL1-CX3CR1 interaction and totally abrogated by a Rho antagonist. To evaluate the role of CX3CR1 system in vivo, Matrigel plugs were implanted in competent CX3CR1+/gfp and functionally deficient CX3CR1gfp/gfp mice. Leaky microvessels (MV) were formed in the Matrigel implanted in CX3CR1gfp/gfp but not in CX3CR1+/gfp mice. In experimental plaque neovascularization immature MV phenotype was observed in CX3CR1gfp/gfp mice, lacking CX3CR1 positive smooth muscle-like cells, extracellular collagen and basement membrane (BM) laminin compared to competent CX3CR1+/gfp mice. This was associated with increased extravasation of platelets into the intima of CX3CR1gfp/gfp but not functionally competent CX3CR1 mice. Pharmacologic targeting using CX3CR1 receptor antagonist in wild type mice resulted in formation of plaque MV with poor BM coverage and a leaky phenotype. Our data indicate a hitherto unrecognised role for functional CX3CR1 in Matrigel and experimental plaque neovascularization in vivo, which may buttress MV collectively in favour of a more stable non-leaky phenotype.Science Foundation IrelandAgence Nationale de la Recherch

    Thromboxane A2 receptor gene regulation

    Get PDF
    Thromboxane plays an essential role in haemostasis, regulating platelet aggregation and vessel tone. In humans, it signals through the TPalpha and TPbeta isoforms that are transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively. Herein, the consequence of megakaryocytic differentiation on Prm1-directed TPα expression was investigated. Phorbol ester (PMA) treatment substantially increased TPα mRNA and Prm1-directed gene expression in human erythroleukemia (HEL) and K562 cells. Deletional analyses localized the major responsive element(s) to the upstream -8500 and -7504 region while mutation of four WT1/Egr1/Sp1 cis-elements therein established that each contribute to the induction. Moreover, PMA increased Egr1, but not WT1 or Sp1, expression while the NAB1 co-repressor impaired PMA-induction of Egr1 and Prm1-directed gene expression. Chromatin immunoprecipitations established that WT1 is predominantly bound in vivo to the 5’ Prm1 region in non-differentiated HEL cells. In response to PMA, there was initial induction in Egr1 and associated reduction in WT1 binding to Prm1 in vivo which was displaced by Sp1 following sustained treatment. Collectively, data establish that regulated WT1 followed by sequential Egr1 and Sp1 binding to elements within Prm1 mediate repression and subsequent induction of TPα during differentiation into the megakaryocytic phenotype, shedding significant insights into factors regulating TPa expression therein.Science Foundation IrelandHealth Research BoardOther funderWellcome Trustti,ot,ke,ab,-SB02/09/201

    Thromboxane A2 receptor gene regulation

    No full text
    Thromboxane plays an essential role in haemostasis, regulating platelet aggregation and vessel tone. In humans, it signals through the TPalpha and TPbeta isoforms that are transcriptionally regulated by distinct promoters, Prm1 and Prm3, respectively. Herein, the consequence of megakaryocytic differentiation on Prm1-directed TPα expression was investigated. Phorbol ester (PMA) treatment substantially increased TPα mRNA and Prm1-directed gene expression in human erythroleukemia (HEL) and K562 cells. Deletional analyses localized the major responsive element(s) to the upstream -8500 and -7504 region while mutation of four WT1/Egr1/Sp1 cis-elements therein established that each contribute to the induction. Moreover, PMA increased Egr1, but not WT1 or Sp1, expression while the NAB1 co-repressor impaired PMA-induction of Egr1 and Prm1-directed gene expression. Chromatin immunoprecipitations established that WT1 is predominantly bound in vivo to the 5’ Prm1 region in non-differentiated HEL cells. In response to PMA, there was initial induction in Egr1 and associated reduction in WT1 binding to Prm1 in vivo which was displaced by Sp1 following sustained treatment. Collectively, data establish that regulated WT1 followed by sequential Egr1 and Sp1 binding to elements within Prm1 mediate repression and subsequent induction of TPα during differentiation into the megakaryocytic phenotype, shedding significant insights into factors regulating TPa expression therein.Science Foundation IrelandHealth Research BoardOther funderWellcome Trustti,ot,ke,ab,-SB02/09/201

    Controlling the DNA Binding Specificity of bHLH Proteins through Intramolecular Interactions

    Get PDF
    Reversible control of the conformation of proteins was employed to probe the relationship between flexibility and specificity of the basic helix-loop-helix protein MyoD. A fusion protein (apaMyoD) was designed where the basic DNA binding helix of MyoD was stablized by an amino-terminal extension with a sequence derived from the bee venom peptide apamin. The disulfide-stabilized helix from apamin served as a nucleus for a helix that extended for a further ten residues, thereby holding apaMyoD's DNA recognition helix in a predominantly α-helical conformation. The thermal stability of the DNA complexes of apaMyoD was increased by 13°C relative to MyoD-bHLH. Measurements of the fluorescence anisotropy change on DNA binding indicated that apaMyoD bound to E-box-containing DNA sequences with enhanced affinity relative to MyoD-bHLH. Consequently, the DNA binding specificity of apaMyoD was increased 10-fold

    Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization.

    Get PDF
    Monocyte/macrophages are implicated in initiation of angiogenesis, tissue/organ perfusion and atherosclerosis biology. We recently showed that chemokine receptor CX(3)CR1 is an essential regulator of monocyte/macrophage derived smooth muscle cell differentiation in the vessel wall after injury. Here we hypothesised the contribution of CX(3)CR1- CX(3)CL1 interaction to in vivo neovascularization and studied the functional consequences of genetic and pharmacologic targeting of CX(3)CR1 in formation, maturation and maintenance of microvascular integrity. Cells functionally deficient in CX(3)CR1 lacked matrix tunnelling and tubulation capacity in a 3D Matrigel assay. These morphogenic and cytokinetic responses were driven by CX(3)CL1-CX(3)CR1 interaction and totally abrogated by a Rho antagonist. To evaluate the role of CX(3)CR1 system in vivo, Matrigel plugs were implanted in competent CX(3)CR1(+/gfp) and functionally deficient CX(3)CR1(gfp/gfp) mice. Leaky microvessels (MV) were formed in the Matrigel implanted in CX(3)CR1(gfp/gfp) but not in CX(3)CR1(+/gfp) mice. In experimental plaque neovascularization immature MV phenotype was observed in CX(3)CR1(gfp/gfp) mice, lacking CX(3)CR1 positive smooth muscle-like cells, extracellular collagen and basement membrane (BM) laminin compared to competent CX(3)CR1(+/gfp) mice. This was associated with increased extravasation of platelets into the intima of CX(3)CR1(gfp/gfp) but not functionally competent CX(3)CR1 mice. Pharmacologic targeting using CX(3)CR1 receptor antagonist in wild type mice resulted in formation of plaque MV with poor BM coverage and a leaky phenotype. Our data indicate a hitherto unrecognised role for functional CX(3)CR1 in Matrigel and experimental plaque neovascularization in vivo, which may buttress MV collectively in favour of a more stable non-leaky phenotype
    corecore