88 research outputs found

    Beyond the “Pain Matrix,” inter-run synchronization during mechanical nociceptive stimulation

    Get PDF
    Pain is a complex experience that is thought to emerge from the activity of multiple brain areas, some of which are inconsistently detected using traditional fMRI analysis. One hypothesis is that the traditional analysis of pain-related cerebral responses, by relying on the correlation of a predictor and the canonical hemodynamic response function (HRF)- the general linear model (GLM)- may under-detect the activity of those areas involved in stimulus processing that do not present a canonical HRF. In this study, we employed an innovative data-driven processing approach- an inter-run synchronization (IRS) analysis- that has the advantage of not establishing any pre-determined predictor definition. With this method we were able to evidence the involvement of several brain regions that are not usually found when using predictor-based analysis. These areas are synchronized during the administration of mechanical punctate stimuli and are characterized by a BOLD response different from the canonical HRF. This finding opens to new approaches in the study of pain imaging

    Is it a painful error?:The effect of unpredictability and intensity of punishment on the error-related negativity, and somatosensory evoked potentials

    Get PDF
    We examined how predictable and unpredictable punishment intensity contingent on error commission modulated ERN amplitudes. We recorded the ERN in 35 healthy volunteers performing the Eriksen flanker task. Errors were punished with predictable nonpainful, painful or unpredictable electrical stimulation. Furthermore, we investigated trait anxiety. We observed that ERN amplitudes did not differ across conditions, nor were there significant effects of anxiety. In contrast, we found that predictable painful punishments led to smaller Error Positivity (Pe). The effects of predictability and intensity were present in Somatosensory Evoked Potentials elicited by the punishments. N1 amplitudes were increased for painful compared to nonpainful stimulation, and P2/P3 amplitudes for painful compared to nonpainful, and for unpredictable compared to predictable stimulation. We suggest that unpredictability and increased painfulness of punishments enhance the potential motivational significance of the errors, but do not potentiate ERN amplitudes beyond the ones elicited by errors punished with predictable nonpainful stimulation

    Perceptual correlates of homosynaptic long-term potentiation in human nociceptive pathways: A replication study

    Get PDF
    Animal studies have shown that high-frequency stimulation (HFS) of peripheral C-fibres induces long-term potentiation (LTP) within spinal nociceptive pathways. The aim of this replication study was to assess if a perceptual correlate of LTP can be observed in humans. In 20 healthy volunteers, we applied HFS to the left or right volar forearm. Before and after applying HFS, we delivered single electrical test stimuli through the HFS electrode while a second electrode at the contra-lateral arm served as a control condition. Moreover, to test the efficacy of the HFS protocol, we quantified changes in mechanical pinprick sensitivity before and after HFS of the skin surrounding both electrodes. The perceived intensity was collected for both electrical and mechanical stimuli. After HFS, the perceived pain intensity elicited by the mechanical pinprick stimuli applied on the skin surrounding the HFS-treated site was significantly higher compared to control site (heterotopic effect). Furthermore, we found a higher perceived pain intensity for single electrical stimuli delivered to the HFS-treated site compared to the control site (homotopic effect). Whether the homotopic effect reflects a perceptual correlate of homosynaptic LTP remains to be elucidated.Fil: van de Broeke, Emanuel N.. Université Catholique de Louvain; BélgicaFil: Vanmaele, Tessa. Katholikie Universiteit Leuven; BélgicaFil: Mouraux, André. Université Catholique de Louvain; BélgicaFil: Stouffs, Alexandre. Université Catholique de Louvain; BélgicaFil: Biurrun Manresa, José Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Torta, Diana M.. Katholikie Universiteit Leuven; Bélgic
    • …