58 research outputs found

    Study of disposable microdevices for DNA electrophoresis

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, September 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. [77]-[79]).A study was undertaken to determine if a microfluidic chip, made of economical plastic materials, is feasible. The chip was designed to perform gel electrophoresis, specifically of DNA fragments for either sequencing or identification purposes. With a disposable version of such a chip, constraints on the gel type are relaxed and lifetime issues become nonexistent. Such a chip was created using polydimethylsiloxane(PDMS) as the plastic material, with a cast molding process. The chip was subsequently sealed against a piece of PDMS, mounted on a glass slide for structural support. Fluidic and electrical interconnects were added to the chip. A polyacrylarnide solution was injected into the chip for use in DNA separations. The chip was then placed into an apparatus designed for laser induced fluorescence(LIF) detection. Several different samples were run on the chip, including polystyrene beads, organic dye molecules, and single tandem repeat (STR) allelic ladders. The chip demonstrated its electrophoretic efficiency, evincing a low, almost negligible amount of electroosmotic flow. The separation of the dye and DNA was accomplished with good fidelity, allowing for identification of the various substitutents of the loaded sample.(cont.) The PDMS chip, though demonstrably efficient at DNA separation, needs work before it can move out of the prototype phase. Substantial work on the fluidic interconnection, as well as the basic plastic formulation is needed to move this idea forward. However, the chip is sufficient for a clear proof of the principle of disposable chips use in electrophoretic separations.by Winston Timp.S.M

    Study of cell-cell communication using 3D living cell microarrays

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 135-152).Cellular behavior is not dictated solely from within; it is also guided by a myriad of external cues. If cells are removed from their natural environment, apart from the microenvironment and social context they are accustomed to, it is difficult to study their behavior in any meaningful way. To that end, I describe a method for using optical trapping for positioning cells with submicron accuracy in three dimensions, then encapsulating them in hydrogel, in order to mimic the in vivo microenvironment. This process has been carefully optimized for cell viability, checking both prokaryotic and eukaryotic cells for membrane integrity and metabolic activity. To demonstrate the utility of this system, I have looked at a model "quorum sensing" system in Vibrio Fischeri, which operates by the emission and detection of a small chemical signal, an acyl-homoserine lactone. Through synthetic biology, I have engineered plasmids which express "sending" and "receiving" genes. Bacteria containing these plasmids were formed into complex 3D patterns, designed to assay signaling response. The gene expression of the bacteria was tracked over time using fluorescent proteins as reporters. A model for this system was composed using a finite element method to simulate signal transport through the hydrogel, and simple mass-action kinetic equations to simulate the resulting protein expression over time.by Winston Timp.Ph.D

    Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors

    Get PDF
    Background: One of the most provocative recent observations in cancer epigenetics is the discovery of large hypomethylated blocks, including single copy genes, in colorectal cancer, that correspond in location to heterochromatic LOCKs (large organized chromatin lysine-modifications) and LADs (lamin-associated domains). Methods: Here we performed a comprehensive genome-scale analysis of 10 breast, 28 colon, nine lung, 38 thyroid, 18 pancreas cancers, and five pancreas neuroendocrine tumors as well as matched normal tissue from most of these cases, as well as 51 premalignant lesions. We used a new statistical approach that allows the identification of large hypomethylated blocks on the Illumina HumanMethylation450 BeadChip platform. Results: We find that hypomethylated blocks are a universal feature of common solid human cancer, and that they occur at the earliest stage of premalignant tumors and progress through clinical stages of thyroid and colon cancer development. We also find that the disrupted CpG islands widely reported previously, including hypermethylated island bodies and hypomethylated shores, are enriched in hypomethylated blocks, with flattening of the methylation signal within and flanking the islands. Finally, we found that genes showing higher between individual gene expression variability are enriched within these hypomethylated blocks. Conclusion: Thus hypomethylated blocks appear to be a universal defining epigenetic alteration in human cancer, at least for common solid tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0061-y) contains supplementary material, which is available to authorized users

    A framework for assessing 16S rRNA marker-gene survey data analysis methods using mixtures.

    Get PDF
    There are a variety of bioinformatic pipelines and downstream analysis methods for analyzing 16S rRNA marker-gene surveys. However, appropriate assessment datasets and metrics are needed as there is limited guidance to decide between available analysis methods. Mixtures of environmental samples are useful for assessing analysis methods as one can evaluate methods based on calculated expected values using unmixed sample measurements and the mixture design. Previous studies have used mixtures of environmental samples to assess other sequencing methods such as RNAseq. But no studies have used mixtures of environmental to assess 16S rRNA sequencing. We developed a framework for assessing 16S rRNA sequencing analysis methods which utilizes a novel two-sample titration mixture dataset and metrics to evaluate qualitative and quantitative characteristics of count tables. Our qualitative assessment evaluates feature presence/absence exploiting features only present in unmixed samples or titrations by testing if random sampling can account for their observed relative abundance. Our quantitative assessment evaluates feature relative and differential abundance by comparing observed and expected values. We demonstrated the framework by evaluating count tables generated with three commonly used bioinformatic pipelines: (i) DADA2 a sequence inference method, (ii) Mothur a de novo clustering method, and (iii) QIIME an open-reference clustering method. The qualitative assessment results indicated that the majority of Mothur and QIIME features only present in unmixed samples or titrations were accounted for by random sampling alone, but this was not the case for DADA2 features. Combined with count table sparsity (proportion of zero-valued cells in a count table), these results indicate DADA2 has a higher false-negative rate whereas Mothur and QIIME have higher false-positive rates. The quantitative assessment results indicated the observed relative abundance and differential abundance values were consistent with expected values for all three pipelines. We developed a novel framework for assessing 16S rRNA marker-gene survey methods and demonstrated the framework by evaluating count tables generated with three bioinformatic pipelines. This framework is a valuable community resource for assessing 16S rRNA marker-gene survey bioinformatic methods and will help scientists identify appropriate analysis methods for their marker-gene surveys.https://doi.org/10.1186/s40168-020-00812-

    Nanopore native RNA sequencing of a human poly(A) transcriptome

    Get PDF
    High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3′ poly(A) tail length, base modifications and transcript haplotypes

    A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor.

    Get PDF
    Klebsiella pneumoniae (Kp) is an important cause of healthcare-associated infections, which increases patient morbidity, mortality, and hospitalization costs. Gut colonization by Kp is consistently associated with subsequent Kp disease, and patients are predominantly infected with their colonizing strain. Our previous comparative genomics study, between disease-causing and asymptomatically colonizing Kp isolates, identified a plasmid-encoded tellurite (TeO3-2)-resistance (ter) operon as strongly associated with infection. However, TeO3-2 is extremely rare and toxic to humans. Thus, we used a multidisciplinary approach to determine the biological link between ter and Kp infection. First, we used a genomic and bioinformatic approach to extensively characterize Kp plasmids encoding the ter locus. These plasmids displayed substantial variation in plasmid incompatibility type and gene content. Moreover, the ter operon was genetically independent of other plasmid-encoded virulence and antibiotic resistance loci, both in our original patient cohort and in a large set (n = 88) of publicly available ter operon-encoding Kp plasmids, indicating that the ter operon is likely playing a direct, but yet undescribed role in Kp disease. Next, we employed multiple mouse models of infection and colonization to show that 1) the ter operon is dispensable during bacteremia, 2) the ter operon enhances fitness in the gut, 3) this phenotype is dependent on the colony of origin of mice, and 4) antibiotic disruption of the gut microbiota eliminates the requirement for ter. Furthermore, using 16S rRNA gene sequencing, we show that the ter operon enhances Kp fitness in the gut in the presence of specific indigenous microbiota, including those predicted to produce short chain fatty acids. Finally, administration of exogenous short-chain fatty acids in our mouse model of colonization was sufficient to reduce fitness of a ter mutant. These findings indicate that the ter operon, strongly associated with human infection, encodes factors that resist stress induced by the indigenous gut microbiota during colonization. This work represents a substantial advancement in our molecular understanding of Kp pathogenesis and gut colonization, directly relevant to Kp disease in healthcare settings

    Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore-Washington metropolitan area.

    Get PDF
    The early COVID-19 pandemic was characterized by rapid global spread. In Maryland and Washington, DC, United States, more than 2500 cases were reported within 3 weeks of the first COVID-19 detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2 - the virus that causes COVID-19 - in the region. We analyzed 620 samples collected from the Johns Hopkins Health System during March 11-31, 2020, comprising 28.6% of the total cases in Maryland and Washington, DC. From these samples, we generated 114 complete viral genomes. Analysis of these genomes alongside a subsampling of over 1000 previously published sequences showed that the diversity in this region rivaled global SARS-CoV-2 genetic diversity at that time and that the sequences belong to all of the major globally circulating lineages, suggesting multiple introductions into the region. We also analyzed these regional SARS-CoV-2 genomes alongside detailed clinical metadata and found that clinically severe cases had viral genomes belonging to all major viral lineages. We conclude that efforts to control local spread of the virus were likely confounded by the number of introductions into the region early in the epidemic and the interconnectedness of the region as a whole

    Nanopore Sequencing using a Hidden Markov Model for Base-Calling

    Get PDF
    • ‚Ķ
    corecore