84 research outputs found

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Oxepine-Based π‑Conjugated Ladder/Step-Ladder Polymers with Excited -State Aromaticity

    No full text
    Ladder polymers with backbones of uninterrupted ring-fused units have attracted academic and industrial attention for decades because of their extended π-conjugation and intrinsic microporosity for possible potential applications in organic optoelectronics and membrane gas separations. We report herein the synthesis and characterization of a new series of oxepine-based ladder/step-ladder polymers prepared by acid-promoted intramolecular aromatic electrophilic cyclization reactions on alkyne-containing poly(arylene ether) precursors. In contrast to the more common annulations that produce five- and six-membered rings, we report that a seven-membered ring can be regioselectively and quantitatively generated postpolymerization. Model compounds with repeating units of polymers have also been synthesized, and X-ray crystallographic analysis reveals a nonplanar contorted structure that is also present in the polymers. More interestingly, the oxepine-based ladder/step-ladder polymers appear to display a photoinduced planarization of the 8 π electron oxepine ring driven by the excited-state aromatic stabilization energy, as indicated by the large Stokes shift

    Oxepine-Based π‑Conjugated Ladder/Step-Ladder Polymers with Excited -State Aromaticity

    No full text
    Ladder polymers with backbones of uninterrupted ring-fused units have attracted academic and industrial attention for decades because of their extended π-conjugation and intrinsic microporosity for possible potential applications in organic optoelectronics and membrane gas separations. We report herein the synthesis and characterization of a new series of oxepine-based ladder/step-ladder polymers prepared by acid-promoted intramolecular aromatic electrophilic cyclization reactions on alkyne-containing poly(arylene ether) precursors. In contrast to the more common annulations that produce five- and six-membered rings, we report that a seven-membered ring can be regioselectively and quantitatively generated postpolymerization. Model compounds with repeating units of polymers have also been synthesized, and X-ray crystallographic analysis reveals a nonplanar contorted structure that is also present in the polymers. More interestingly, the oxepine-based ladder/step-ladder polymers appear to display a photoinduced planarization of the 8 π electron oxepine ring driven by the excited-state aromatic stabilization energy, as indicated by the large Stokes shift

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown

    Flexible Phenanthracene Nanotubes for Explosive Detection

    No full text
    Phenanthracene nanotubes with arylene-ethynylene-butadiynylene rims and phenanthracene walls are synthesized in a modular bottom-up approach. One of the rims carries hexadecyloxy side chains, mediating the affinity to highly oriented pyrolytic graphite. Molecular dynamics simulations show that the nanotubes are much more flexible than their structural formulas suggest: In 12, the phenanthracene units act as hinges that flip the two macrocycles relative to each other to one of two possible sites, as quantum mechanical models suggest and scanning tunneling microscopy investigations prove. Unexpectedly, both theory and experiment show for 13 that the three phenanthracene hinges are deflected from the upright position, accompanied by a deformation of both macrocycles from their idealized sturdy macroporous geometry. This flexibility together with their affinity to carbon-rich substrates allows for an efficient host–guest chemistry at the solid/gas interface opening the potential for applications in single-walled carbon nanotube-based sensing, and the applicability to build new sensors for the detection of 2,4,6-trinitrotoluene via nitroaromatic markers is shown
    • …
    corecore