103 research outputs found

    Optimality in different strategy classes in zero-sum stochastic games

    Get PDF
    We present a complete picture of the relationship between the existence of 0-optimal strategies and c-optimal strategies, epsilon > 0, in the classes of stationary, Markov and history dependent strategies

    Stochastic games with non-observable actions

    Get PDF
    We examine n-player stochastic games. These are dynamic games where a play evolves in stages along a finite set of states; at each stage players independently have to choose actions in the present state and these choices determine a stage payoff to each player as well as a transition to a new state where actions have to be chosen at the next stage. For each player the infinite sequence of his stage payoffs is evaluated by taking the limiting average. Normally stochastic games are examined under the condition of full monitoring, i.e. At any stage each player observes the present state and the actions chosen by all players. This paper is a first attempt towards understanding under what circumstances equilibria could exist in n-player stochastic games without full monitoring. We demonstrate the non-existence of ?-equilibria in n-player stochastic games, with respect to the average reward, when at each stage each player is able to observe the present state, his own action, his own payoff, and the payoffs of the other players, but is unable to observe the actions of them. For this purpose, we present and examine a counterexample with 3 players. If we further drop the assumption that the players can observe the payoffs of the others, then counterexamples already exist in games with only 2 players

    Multiplayer Cost Games with Simple Nash Equilibria

    Full text link
    Multiplayer games with selfish agents naturally occur in the design of distributed and embedded systems. As the goals of selfish agents are usually neither equivalent nor antagonistic to each other, such games are non zero-sum games. We study such games and show that a large class of these games, including games where the individual objectives are mean- or discounted-payoff, or quantitative reachability, and show that they do not only have a solution, but a simple solution. We establish the existence of Nash equilibria that are composed of k memoryless strategies for each agent in a setting with k agents, one main and k-1 minor strategies. The main strategy describes what happens when all agents comply, whereas the minor strategies ensure that all other agents immediately start to co-operate against the agent who first deviates from the plan. This simplicity is important, as rational agents are an idealisation. Realistically, agents have to decide on their moves with very limited resources, and complicated strategies that require exponential--or even non-elementary--implementations cannot realistically be implemented. The existence of simple strategies that we prove in this paper therefore holds a promise of implementability.Comment: 23 page

    Stochastic Games with Lim Sup Payoff

    Full text link
    Consider a two-person zero-sum stochastic game with countable state space S, finite action sets A and B for players 1 and 2, respectively, and law of motion p. Let u be a bounded real-valued function defined on the state space S and assume that the payoff from 2 to 1 along a play (or infinit

    Bounding Average-Energy Games

    Get PDF
    We consider average-energy games, where the goal is to minimize the long-run average of the accumulated energy. While several results have been obtained on these games recently, decidability of average-energy games with a lower-bound constraint on the energy level (but no upper bound) remained open; in particular, so far there was no known upper bound on the memory that is required for winning strategies. By reducing average-energy games with lower-bounded energy to infinite-state mean-payoff games and analyzing the density of low-energy configurations, we show an almost tight doubly-exponential upper bound on the necessary memory, and prove that the winner of average-energy games with lower-bounded energy can be determined in doubly-exponential time. We also prove EXPSPACE-hardness of this problem. Finally, we consider multi-dimensional extensions of all types of average-energy games: without bounds, with only a lower bound, and with both a lower and an upper bound on the energy. We show that the fully-bounded version is the only case to remain decidable in multiple dimensions.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    • …