3,231 research outputs found

    Effects of magnetic field and disorder on electronic properties of Carbon Nanotubes

    Get PDF
    Electronic properties of metallic and semiconducting carbon nanotubes are investigated in presence of magnetic field perpendicular to the CN-axis, and disorder introduced through energy site randomness. The magnetic field field is shown to induce a metal-insulator transition (MIT) in absence of disorder, and surprisingly disorder does not affect significantly the MIT. These results may find confirmation through tunneling experimentsComment: 4 pages, 6 figures. Phys. Rev. B (in press

    Information-theoretic analysis of the directional influence between cellular processes

    Full text link
    Inferring the directionality of interactions between cellular processes is a major challenge in systems biology. Time-lagged correlations allow to discriminate between alternative models, but they still rely on assumed underlying interactions. Here, we use the transfer entropy (TE), an information-theoretic quantity that quantifies the directional influence between fluctuating variables in a model-free way. We present a theoretical approach to compute the transfer entropy, even when the noise has an extrinsic component or in the presence of feedback. We re-analyze the experimental data from Kiviet et al. (2014) where fluctuations in gene expression of metabolic enzymes and growth rate have been measured in single cells of E. coli. We confirm the formerly detected modes between growth and gene expression, while prescribing more stringent conditions on the structure of noise sources. We furthermore point out practical requirements in terms of length of time series and sampling time which must be satisfied in order to infer optimally transfer entropy from times series of fluctuations.Comment: 24 pages, 7 figure

    Carbon cycle research after Kyoto

    Get PDF
    Recent progress in research of the global carbon cycle is reviewed and research needs for the immediate future are discussed, in light of the challenge posed to society to come to grips with the problem of man-made climate change. The carbon cycle in the oceans and on the land is reviewed, and how the atmosphere functions to couple them together. Major uncertainties still exist for any projection of the future atmospheric burden of carbon dioxide resulting from postulated emission scenarios of CO2. We present some ideas on how future policies designed to limit emissions or to sequester carbon can possibly be supported by scientific evidence of their effectiveness

    Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation

    Get PDF
    An infrared absorption spectrometer has been constructed to measure the stable isotopic composition of atmospheric methane samples. The spectrometer employs periodically poled lithium niobate to generate 15 ÎŒW of tunable difference-frequency radiation from two near-infrared diode lasers that probe the Îœ3 rotational-vibrational band of methane at 3.4 ÎŒm. To enhance the signal, methane is extracted from 25 l of air by use of a cryogenic chromatographic column and is expanded into the multipass cell for analysis. A measurement precision of 12‰ is demonstrated for both ÎŽ13C and ÎŽD

    Universality of electron correlations in conducting carbon nanotubes

    Full text link
    Effective low-energy Hamiltonian of interacting electrons in conducting single-wall carbon nanotubes with arbitrary chirality is derived from the microscopic lattice model. The parameters of the Hamiltonian show very weak dependence on the chiral angle, which makes the low energy properties of conducting chiral nanotubes universal. The strongest Mott-like electron instability at half filling is investigated within the self-consistent harmonic approximation. The energy gaps occur in all modes of elementary excitations and estimate at 0.01−0.10.01-0.1 eV.Comment: 4 pages, 2 figure

    Intrinsic Coulomb blockade in multi-wall carbon nanotubes

    Full text link
    Carbon nanotubes provide a new class of molecular wires that display new and exciting mesoscopic transport properties. We provide a detailed theoretical description for transport in multi-wall nanotubes, where both disorder and strong interactions are important. The interplay of both aspects leads to a particularly effective intrinsic Coulomb blockade for tunneling. The relation to recent experiments is discussed.Comment: 13 pages, incl 2 figs, for: Special issue "Transport in Molecular Wires" in Chemical Physics, ed. by P. Hanggi, M. Ratner, S. Yalirak

    dc Josephson Effect in Metallic Single-Walled Carbon Nanotubes

    Full text link
    The dc Josephson effect is investigated in a single-walled metallic carbon nanotube connected to two superconducting leads. In particular, by using the Luttinger liquid theory, we analyze the effects of the electron-electron interaction on the supercurrent. We find that in the long junction limit the strong electronic correlations of the nanotube, together with its peculiar band structure, induce oscillations in the critical current as a function of the junction length and/or the nanotube electron filling. These oscillations represent a signature of the Luttinger liquid physics of the nanotube, for they are absent if the interaction is vanishing. We show that this effect can be exploited to reverse the sign of the supercurrent, realizing a tunable \pi-junction.Comment: 7 pages, 5 figure

    Strong correlation effects in single-wall carbon nanotubes

    Full text link
    We present an overview of strong correlations in single-wall carbon nanotubes, and an introduction to the techniques used to study them theoretically. We concentrate on zigzag nanotubes, although universality dictates that much ofthe theory can also be applied to armchair or chiral nanotubes. We show how interaction effects lead to exotic low energy properties and discuss future directions for studies on correlation effects in nanotubes

    Spin configurations of carbon nanotube in a nonuniform external potential

    Full text link
    We study, theoretically, the ground state spin of a carbon nanotube in the presence of an external potential. We find that when the external potential is applied to a part of the nanotube, its variation changes the single electron spectrum significantly. This, in combination with Coulomb repulsion and the symmetry properties of a finite length armchair nanotube induces spin flips in the ground state when the external potential is varied. We discuss the possible application of our theory to recent measurements of Coulomb blocked peaks and their dependence on a weak magnetic field in armchair carbon nanotubes.Comment: RevTeX, 5 pages + two figure
    • 

    corecore