62 research outputs found

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06

    Inflation with stable anisotropic hair: is it cosmologically viable?

    Get PDF
    Recently an inflationary model with a vector field coupled to the inflaton was proposed and the phenomenology studied for the Bianchi type I spacetime. It was found that the model demonstrates a counter-example to the cosmic no-hair theorem since there exists a stable anisotropically inflationary fix-point. One of the great triumphs of inflation, however, is that it explains the observed flatness and isotropy of the universe today without requiring special initial conditions. Any acceptable model for inflation should thus explain these observations in a satisfactory way. To check whether the model meets this requirement, we introduce curvature to the background geometry and consider axisymmetric spacetimes of Bianchi type II,III and the Kantowski-Sachs metric. We show that the anisotropic Bianchi type I fix-point is an attractor for the entire family of such spacetimes. The model is predictive in the sense that the universe gets close to this fix-point after a few e-folds for a wide range of initial conditions. If inflation lasts for N e-folds, the curvature at the end of inflation is typically of order exp(-2N). The anisotropy in the expansion rate at the end of inflation, on the other hand, while being small on the one-percent level, is highly significant. We show that after the end of inflation there will be a period of isotropization lasting for about 2N/3 e-folds. After that the shear scales as the curvature and becomes dominant around N e-folds after the end of inflation. For plausible bounds on the reheat temperature the minimum number of e-folds during inflation, required for consistency with the isotropy of the supernova Ia data, lays in the interval (21,48). Thus the results obtained for our restricted class of spacetimes indicates that inflation with anisotropic hair is cosmologically viable.Comment: 25 pages, 3 figures; v2: Minor changes, refs added; v3: JHEP version (proof-reading corrections

    Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality

    Full text link
    We study the background cosmology of the ghost-free, bimetric theory of gravity. We perform an extensive statistical analysis of the model using both frequentist and Bayesian frameworks and employ the constraints on the expansion history of the Universe from the observations of supernovae, the cosmic microwave background and the large scale structure to estimate the model's parameters and test the goodness of the fits. We explore the parameter space of the model with nested sampling to find the best-fit chi-square, obtain the Bayesian evidence, and compute the marginalized posteriors and mean likelihoods. We mainly focus on a class of sub-models with no explicit cosmological constant (or vacuum energy) term to assess the ability of the theory to dynamically cause a late-time accelerated expansion. The model behaves as standard gravity without a cosmological constant at early times, with an emergent extra contribution to the energy density that converges to a cosmological constant in the far future. The model can in most cases yield very good fits and is in perfect agreement with the data. This is because many points in the parameter space of the model exist that give rise to time-evolution equations that are effectively very similar to those of the Λ\LambdaCDM. This similarity makes the model compatible with observations as in the Λ\LambdaCDM case, at least at the background level. Even though our results indicate a slightly better fit for the Λ\LambdaCDM concordance model in terms of the pp-value and evidence, none of the models is statistically preferred to the other. However, the parameters of the bigravity model are in general degenerate. A similar but perturbative analysis of the model as well as more data will be required to break the degeneracies and constrain the parameters, in case the model will still be viable compared to the Λ\LambdaCDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13), (3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13) and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to referee's comments; references added; acknowledgements modified; all results completely unchanged; matches version accepted for publication in JHE

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures

    Disformally self-tuning gravity

    Get PDF
    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds