176 research outputs found

    AGNOR as a tumour marker and its role in assessing the severity of cervical lesions.

    Get PDF
    Cervical cancer is the second most common cancer among females and is the first cause of cancer related deaths in developing countries. In urban areas, it accounts for 40% and 60% in rural areas.(cancer registry barshi) 1 in 154 deaths occur in the world due to carcinoma cervix(cancer statistics 2014). Key to prevent cervical cancer is awareness. Increased incidence in India due to lack of knowledge and it cannot happen to me attitude

    An Unsupervised Based Stochastic Parallel Gradient Descent For Fcm Learning Algorithm With Feature Selection For Big Data

    Get PDF
    Huge amount of the dataset consists millions of explanation and thousands, hundreds of features, which straightforwardly carry their amount of terabytes level. Selection of these hundreds of features for computer visualization and medical imaging applications problems is solved by using learning algorithm in data mining methods such as clustering, classification and feature selection methods .Among them all of data mining algorithm clustering methods which efficiently group similar features and unsimilar features are grouped as one cluster ,in this paper present a novel unsupervised cluster learning methods for feature selection of big dataset samples. The proposed unsupervised cluster learning methods removing irrelevant and unimportant features through the FCM objective function. The performance of proposed unsupervised FCM learning algorithm is robustly precious via the initial centroid values and fuzzification parameter (m). Therefore, the selection of initial centroid for cluster is very important to improve feature selection results for big dataset samples. To carry out this process, propose a novel Stochastic Parallel Gradient Descent (SPGD) method to select initial centroid of clusters for FCM is automatically to speed up process to group similar features and improve the quality of the cluster. So the proposed clustering method is named as SPFCM clustering, where the fuzzification parameter (m) for cluster is optimized using Hybrid Particle Swarm with Genetic (HPSG) algorithm. The algorithm selects features by calculation of distance value between two feature samples via kernel learning for big dataset samples via unsupervised learning and is especially easy to apply. Experimentation work of the proposed SPFCM and existing clustering methods is experimented in UCI machine learning larger dataset samples, it shows that the proposed SPFCM clustering methods produces higher feature selection results when compare to existing feature selection clustering algorithms , and being computationally extremely well-organized. DOI: 10.17762/ijritcc2321-8169.15072

    Evidence of Balanced Diversity at the Chicken Interleukin 4 Receptor Alpha Chain Locus

    Get PDF
    Background: The comparative analysis of genome sequences emerging for several avian species with thefully sequenced chicken genome enables the genome-wide investigation of selective processes infunctionally important chicken genes. In particular, because of pathogenic challenges it is expected thatgenes involved in the chicken immune system are subject to particularly strong adaptive pressure.Signatures of selection detected by inter-species comparison may then be investigated at the populationlevel in global chicken populations to highlight potentially relevant functional polymorphisms.Results: Comparative evolutionary analysis of chicken (Gallus gallus) and zebra finch (Taeniopygia guttata)genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with asignificant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencingand detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa,commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolinand bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, actingto preserve different high-frequency alleles at two nonsynonymous sites.Conclusion: Haplotype networks indicate that red JF is the primary contributor of diversity at chickenIL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixtureand introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor inthe immune system, so balancing selection related to the host response to pathogens cannot be excluded

    Evidence of balanced diversity at the chicken interleukin 4 receptor alpha chain locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The comparative analysis of genome sequences emerging for several avian species with the fully sequenced chicken genome enables the genome-wide investigation of selective processes in functionally important chicken genes. In particular, because of pathogenic challenges it is expected that genes involved in the chicken immune system are subject to particularly strong adaptive pressure. Signatures of selection detected by inter-species comparison may then be investigated at the population level in global chicken populations to highlight potentially relevant functional polymorphisms.</p> <p>Results</p> <p>Comparative evolutionary analysis of chicken (<it>Gallus gallus</it>) and zebra finch (<it>Taeniopygia guttata</it>) genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with a significant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencing and detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa, commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolin and bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, acting to preserve different high-frequency alleles at two nonsynonymous sites.</p> <p>Conclusion</p> <p>Haplotype networks indicate that red JF is the primary contributor of diversity at chicken IL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixture and introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor in the immune system, so balancing selection related to the host response to pathogens cannot be excluded.</p

    Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip

    Get PDF
    Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator—PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip–located at the 5’ end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5’ Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5’ end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5’ Hoxa genes and that Hottip RNA binds to the 5’ end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis

    Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults : A Meta-analysis

    Get PDF
    OBJECTIVE One-hour plasma glucose (1-h PG) during the oral glucose tolerance test (OGTT) is an accurate predictor of type 2 diabetes. We performed a meta-analysis to determine the optimum cutoff of 1-h PG for detection of type 2 diabetes using 2-h PG as the gold standard. RESEARCH DESIGN AND METHODS We included 15 studies with 35,551 participants from multiple ethnic groups (53.8% Caucasian) and 2,705 newly detected cases of diabetes based on 2-h PG during OGTT. We excluded cases identified only by elevated fasting plasma glucose and/or HbA(1c). We determined the optimal 1-h PG threshold and its accuracy at this cutoff for detection of diabetes (2-h PG >= 11.1 mmol/L) using a mixed linear effects regression model with different weights to sensitivity/specificity (2/3, 1/2, and 1/3). RESULTS Three cutoffs of 1-h PG, at 10.6 mmol/L, 11.6 mmol/L, and 12.5 mmol/L, had sensitivities of 0.95, 0.92, and 0.87 and specificities of 0.86, 0.91, and 0.94 at weights 2/3, 1/2, and 1/3, respectively. The cutoff of 11.6 mmol/L (95% CI 10.6, 12.6) had a sensitivity of 0.92 (0.87, 0.95), specificity of 0.91 (0.88, 0.93), area under the curve 0.939 (95% confidence region for sensitivity at a given specificity: 0.904, 0.946), and a positive predictive value of 45%. CONCLUSIONS The 1-h PG of >= 11.6 mmol/L during OGTT has a good sensitivity and specificity for detecting type 2 diabetes. Prescreening with a diabetes-specific risk calculator to identify high-risk individuals is suggested to decrease the proportion of false-positive cases. Studies including other ethnic groups and assessing complication risk are warranted.Peer reviewe

    Decreased Prevalence of Lymphatic Filariasis among Diabetic Subjects Associated with a Diminished Pro-Inflammatory Cytokine Response (CURES 83)

    Get PDF
    Epidemiological studies have shown an inverse correlation between the incidence of lymphatic filariasis (LF) and the incidence of allergies and autoimmunity. However, the interrelationship between LF and type-2 diabetes is not known and hence, a cross sectional study to assess the baseline prevalence and the correlates of sero-positivity of LF among diabetic subjects was carried out (n = 1416) as part of the CURES study. There was a significant decrease in the prevalence of LF among diabetic subjects (both newly diagnosed [5.7%] and those under treatment [4.3%]) compared to pre-diabetic subjects [9.1%] (p = 0.0095) and non-diabetic subjects [10.4%] (p = 0.0463). A significant decrease in filarial antigen load (p = 0.04) was also seen among diabetic subjects. Serum cytokine levels of the pro-inflammatory cytokines—IL-6 and GM-CSF—were significantly lower in diabetic subjects who were LF positive, compared to those who were LF negative. There were, however, no significant differences in the levels of anti-inflammatory cytokines—IL-10, IL-13 and TGF-β—between the two groups. Although a direct causal link has yet to be shown, there appears to be a striking inverse relationship between the prevalence of LF and diabetes, which is reflected by a diminished pro-inflammatory cytokine response in Asian Indians with diabetes and concomitant LF

    Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken (<it>Gallus gallus</it>), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of ~1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs).</p> <p>Results</p> <p>At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r<sup>2 </sup>for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb.</p> <p>Conclusion</p> <p>Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.</p

    Cornelia-de Lange syndrome-associated mutations cause a DNA damage signalling and repair defect

    Get PDF
    Cornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome

    SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair

    Get PDF
    The research leading to these results is supported by Cancer Research UK (XYG, RAB, EG, PM, PE, SG, C Santos, AJR, NM, PAB, AS and C Swanton), Breast Cancer Research Foundation (C Swanton and NK), Medical Research Council (ID: G0902275 to MG and C Santos; ID: G0701935/2 to AJR and C Swanton), the Danish Cancer Society (AMM, J Bartkova and J Bartek), the Lundbeck Foundation (R93-A8990 to J Bartek), the Ministry of the interior of the Czech Republic (grant VG20102014001 to MM and J Bartek), the National Program of Sustainability (grant LO1304 to MM and J Bartek), the Danish Council for Independent Research (grant DFF-1331-00262 to J Bartek), NIHR RMH/ICR Biomedical Research Centre for Cancer (JL), the EC Framework 7 (PREDICT 259303 to XYG, EG, PM, MG, TJ and C Swanton; DDResponse 259892 to J Bartek and J Bartkova and RESPONSIFY ID:259303 to C Swanton), UCL Overseas Research Scholarship (SG). C Swanton is also supported by the European Research Council, Rosetrees Trust and The Prostate Cancer Foundation. This research is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre
    • …
    corecore