111 research outputs found

    The Role of P-Glycoprotein at the Blood–Brain Barrier in Neurological and Psychiatric Disease

    No full text

    A Workshop on Cognitive Aging and Impairment in the 9/11-Exposed Population

    Get PDF
    The terrorist attacks on 11 September 2001 potentially exposed more than 400,000 responders, workers, and residents to psychological and physical stressors, and numerous hazardous pollutants. In 2011, the World Trade Center Health Program (WTCHP) was mandated to monitor and treat persons with 9/11-related adverse health conditions and conduct research on physical and mental health conditions related to the attacks. Emerging evidence suggests that persons exposed to 9/11 may be at increased risk of developing mild cognitive impairment. To investigate further, the WTCHP convened a scientific workshop that examined the natural history of cognitive aging and impairment, biomarkers in the pathway of neurodegenerative diseases, the neuropathological changes associated with hazardous exposures, and the evidence of cognitive decline and impairment in the 9/11-exposed population. Invited participants included scientists actively involved in health-effects research of 9/11-exposed persons and other at-risk populations. Attendees shared relevant research results from their respective programs and discussed several options for enhancements to research and surveillance activities, including the development of a multi-institutional collaborative research network. The goal of this report is to outline the meeting’s agenda and provide an overview of the presentation materials and group discussion

    Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system

    Full text link
    Cannabinoid receptor CB (CBR) is upregulated on activated microglia and astrocytes in the brain under inflammatory conditions and plays important roles in many neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. The advent of positron emission tomography (PET) using CBR radiotracers has enabled the visualization of CBR distribution in vivo in animal models of central nervous system inflammation, however translation to humans has been less successful. Several novel CBR radiotracers have been developed and evaluated to quantify microglial activation. In this review, we summarize the recent preclinical and clinical imaging results of CBR PET tracers and discuss the prospects of CBR imaging using PET

    Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia

    Get PDF
    Positron emission tomography (PET) imaging with radiotracers that target translocator protein 18 kDa (TSPO) has become a popular approach to assess putative neuroinflammatory processes and associated microglia activation in psychotic illnesses. It remains unclear, however, whether TSPO imaging can accurately capture low-grade inflammatory processes such as those present in schizophrenia and related disorders. Therefore, we evaluated the validity of TSPO as a disease-relevant marker of inflammation using a translational approach, which combined neurodevelopmental and neurodegenerative mouse models with PET imaging in patients with recent-onset schizophrenia and matched controls. Using an infection-mediated neurodevelopmental mouse model, we show that schizophrenia-relevant behavioral abnormalities and increased inflammatory cytokine expression are associated with reduced prefrontal TSPO levels. On the other hand, TSPO was markedly upregulated in a mouse model of acute neurodegeneration and reactive gliosis, which was induced by intrahippocampal injection of kainic acid. In both models, the changes in TSPO levels were not restricted to microglia but emerged in various cell types, including microglia, astrocytes and vascular endothelial cells. Human PET imaging using the second-generation TSPO radiotracer [(11)C]DPA-713 revealed a strong trend towards reduced TSPO binding in the middle frontal gyrus of patients with recent-onset schizophrenia, who were previously shown to display increased levels of inflammatory cytokines in peripheral and central tissues. Together, our findings challenge the common assumption that central low-grade inflammation in schizophrenia is mirrored by increased TSPO expression or ligand binding. Our study further underscores the need to interpret altered TSPO binding in schizophrenia with caution, especially when measures of TSPO are not complemented with other markers of inflammation. Unless more selective microglial markers are available for PET imaging, quantification of cytokines and other inflammatory biomarkers, along with their molecular signaling pathways, may be more accurate in attempts to characterize inflammatory profiles in schizophrenia and other mental disorders that lack robust reactive gliosis

    Advances in the molecular genetics of gliomas - implications for classification and therapy

    Full text link
    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers — together with classic histological features — in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology

    Ten years of anti-vascular endothelial growth factor therapy.

    No full text
    The targeting of vascular endothelial growth factor A (VEGFA), a crucial regulator of both normal and pathological angiogenesis, has revealed innovative therapeutic approaches in oncology and ophthalmology. The first VEGFA inhibitor, bevacizumab, was approved by the US Food and Drug Administration in 2004 for the first-line treatment of metastatic colorectal cancer, and the first VEGFA inhibitors in ophthalmology, pegaptanib and ranibizumab, were approved in 2004 and 2006, respectively. To mark this tenth anniversary of anti-VEGFA therapy, we discuss the discovery of VEGFA, the successes and challenges in the development of VEGFA inhibitors and the impact of these agents on the treatment of cancers and ophthalmic diseases

    MGMT testing-the challenges for biomarker-based glioma treatment.

    No full text
    Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated with temozolomide. Notably, elderly patients (>65-70 years) with glioblastoma whose tumours lack MGMT promoter methylation derive minimal benefit from such chemotherapy. Thus, MGMT promoter methylation status has become a frequently requested laboratory test in neuro-oncology. This Review presents current data on the prognostic and predictive relevance of MGMT testing, discusses clinical trials that have used MGMT status to select participants, evaluates known issues concerning the molecular testing procedure, and addresses the necessity for molecular-context-dependent interpretation of MGMT test results. Whether MGMT promoter methylation testing should be offered to all individuals with glioblastoma, or only to elderly patients and those in clinical trials, is also discussed. Justifications for withholding alkylating agent chemotherapy in patients with MGMT-unmethylated glioblastomas outside clinical trials, and the potential role for MGMT testing in other gliomas, are also discussed

    Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach

    Full text link
    Individualized therapies are popular current concepts in oncology and first steps towards stratified medicine have now been taken in neurooncology through implementation of stratified therapeutic approaches. Knowledge about the molecular basis of brain tumors has expanded greatly in recent years and a few molecular alterations are studied routinely because of their clinical relevance. However, no single targeted agent has yet been fully approved for the treatment of glial brain tumors. In this review, we argue that multidisciplinary and integrated approaches are essential for translational research and the development of new treatments for patients with malignant gliomas, and we present a conceptual framework in which to place the components of such an interdisciplinary approach. We believe that this ambitious goal can be best realized through strong cooperation of brain tumor centers with local hospitals and physicians; such an approach enables close dialogue between expert subspecialty clinicians and local therapists to consider all aspects of this increasingly complex set of diseases

    Advances in imaging to support the development of novel therapies for multiple sclerosis.

    No full text
    Multiple sclerosis (MS) is a common neurological disease in North America and Europe. Although most patients develop major locomotor disability over the course of 15-20 years, in approximately one-third of patients the long-term course is favorable, with minimal disability. Although current disease-modifying treatments reduce the relapse rate, their long-term effects are uncertain. MS treatment trials are challenging because of the variable clinical course and typically slow evolution of the disease. Magnetic resonance imaging (MRI) is sensitive in monitoring MS pathology and facilitates evaluation of potential new treatments. MRI measurements of lesion activity have identified new immunomodulatory treatments for preventing relapse. Quantitative measurements of tissue volume and structural integrity, capable of detecting neuroprotection and repair, should facilitate new treatments designed to prevent irreversible disability. Higher-field MR scanners and new positron emission tomography (PET) radioligands are providing new insights into cellular and pathophysiological abnormalities, and should be valuable in future therapeutic trials. Retinal axonal loss measured using optical coherence tomography (OCT) can assess acute neuroprotection in optic neuritis
    • 

    corecore