97 research outputs found

    Effects of the Veterinary Pharmaceutical Ivermectin in Indoor Aquatic Microcosms

    Get PDF
    The effects of the parasiticide ivermectin were assessed in plankton-dominated indoor microcosms. Ivermectin was applied once at concentrations of 30, 100, 300, 1000, 3000, and 10,000 ng/l. The half-life (dissipation time 50%; DT50) of ivermectin in the water phase ranged from 1.1 to 8.3 days. The lowest NOECcommunity that could be derived on an isolated sampling from the microcosm study by means of multivariate techniques was 100 ng/l. The most sensitive species in the microcosm study were the cladocerans Ceriodaphnia sp. (no observed effect concentration, NOEC = 30 ng/l) and Chydorus sphaericus (NOEC = 100 ng/l). The amphipod Gammarus pulex was less sensitive to ivermectin, showing consistent statistically significant reductions at the 1000-ng/l treatment level. Copepoda taxa decreased directly after application of ivermectin in the highest treatment but had already recovered at day 20 posttreatment. Indirect effects (e.g., increase of rotifers, increased primary production) were observed at the highest treatment level starting only on day 13 of the exposure phase. Cladocera showed the highest sensitivity to ivermectin in both standard laboratory toxicity tests as well as in the microcosm study. This study demonstrates that simple plankton-dominated test systems for assessing the effects of ivermectin can produce results similar to those obtained with large complex outdoor systems

    Effects of an anionic surfactant (FFD-6) on the energy and information flow between a primary producer (Scenedesmus obliquus) and a consumer (Daphnia magna)

    Get PDF
    The effects of a commercially available anionic surfactant solution (FFD-6) on growth and morphology of a common green alga (Scenedesmus obliquus) and on survival and clearance rates of the water flea Daphnia magna were studied. The surfactant-solution elicited a morphological response (formation of colonies) in Scenedesmus at concentrations of 10–100 μl l−1 that were far below the No Observed Effect Concentration (NOEC) value of 1,000 μl l−1 for growth inhibition. The NOEC-value of FFD-6 for colony-induction was 3 μl l−1. Daphnia survival was strongly affected by FFD-6, yielding LC50–24h and LC50–48h of 148 and 26 μl l−1, respectively. In addition, clearance rates of Daphnia feeding on unicellular Scenedesmus were inhibited by FFD-6, yielding a 50% inhibition (EC50–1.5h) at 5.2 μl l−1 with a NOEC of 0.5 μl l−1. When Daphnia were offered FFD-6-induced food in which eight-celled colonies (43 × 29 μm) were most abundant, clearance rates (~0.14 ml ind.−1 h−1) were only 25% the rates of animals that were offered non-induced unicellular (15 × 5 μm) Scenedesmus (~0.56 ml ind.−1 h−1). As FFD-6 concentrations in the treated food used in the experiments were far below the NOEC for clearance rate inhibition, it is concluded that the feeding rate depression was caused by the altered morphology of the Scenedesmus moving them out of the feeding window of the daphnids. The surfactant evoked a response in Scenedesmus that is similar to the natural chemically induced defensive reaction against grazers and could disrupt the natural information conveyance between these plankton organisms