7 research outputs found

    Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission

    Get PDF
    The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention

    Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species

    Get PDF
    We have identified a new signaling role for nitric oxide (NO) in neurons from the trigeminal ganglia (TG). We show that in rat sensory neurons from the TG the NO donor, S-nitroso-N-acetyl-dl-penicillamine, inhibited M-current. This inhibitory effect was blocked by NO scavenging, while inhibition of NO synthases increased M-current, suggesting that tonic NO levels inhibit M-current in TG neurons. Moreover NO increased neuronal excitability and calcitonin gene-related peptide (CGRP) release and these effects could be prevented by perturbing M-channel function. First, NO-induced depolarization was prevented by pre-application of the M-channel blocker XE991 and second, NO-induced increase in CGRP release was prevented by incubation with the M-channel opener retigabine. We investigated the mechanism of the effects of NO on M-channels and identified a site of action of NO to be the redox modulatory site at the triplet of cysteines within the cytosolic linker between transmembrane domains 2 and 3, which is also a site of oxidative modification of M-channels by reactive oxygen species (ROS). NO and oxidative modifications have opposing effects on M-current, suggesting that a tightly controlled local redox and NO environment will exert fine control over M-channel activity and thus neuronal excitability. Together our data have identified a dynamic redox sensor within neuronal M-channels, which mediates reciprocal regulation of channel activity by NO and ROS. This sensor may play an important role in mediating excitatory effects of NO in such trigeminal disorders as headache and migraine

    Synchronisation des réseaux neuronaux dans l' épilepsie du lobe temporal chez l' homme et l' épilepsie-absences chez l' animal (rôle des jonctions communicantes)

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy.

    Get PDF
    International audienceElectroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain

    Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats.

    No full text
    International audienceNeurons which discharge selectively during waking (waking selective) have been found in the tuberomamillary nucleus (TM) and adjacent areas of the posterior hypothalamus. Although they share some electrophysiological properties with aminergic neurons, there is no direct evidence that they are histaminergic. We have recorded from posterior hypothalamic neurons during the sleep-wake cycle in freely moving cats, and investigated the effects on waking selective neurons of specific ligands of histaminergic H3-receptors, which autoregulate the activity of histaminergic neurons. Two types of neurons were seen. Waking selective neurons, termed "waking-on (W-on)," were located exclusively within the TM and adjacent areas, and discharged at a low regular rate during waking (1.71-2.97 Hz), decreased firing during light slow wave sleep (SWS), became silent during deep SWS and paradoxical sleep (PS) and resumed their activity on, or a few seconds before, awakening. "Waking-related" neurons, located in an area dorsal to the TM, displayed a similar, although less regular, low rate of firing (1.74-5.41 Hz) and a similar discharge profile during the sleep-wake cycle; however, unlike "W-on" neurons, they did not completely stop firing during deep SWS and PS. Intramuscular (i.m.) injection of ciproxifan (an H3-receptor antagonist, 1mg/kg), significantly increased the discharge rate of W-on neurons and induced c-fos expression in histamine-immunoreactive neurons, whereas i.m. injection of imetit (an H3-receptor agonist, 1mg/kg) or microinjection of alpha-methylhistamine (another H3-receptor agonist, 0.025-0.1 microg/0.2 microl) in the vicinity of these cells significantly decreased their discharge rate. Moreover, the effect of the antagonist was reversed by the agonists and vice versa. In contrast, "waking-related" neurons were unaffected by these H3-receptor ligands. These data provide evidence for the histaminergic nature of "W-on" neurons and their role in cortical desynchronization during waking, and highlight the heterogeneity of posterior hypothalamic neuronal populations, which might serve different functions during the wakefulness

    Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cholinergic transmission has been implicated in learning, memory and cognition. However, the cellular effects induced by muscarinic acetylcholine receptors (mAChRs) activation are poorly understood in the neocortex. We investigated the effects of the cholinergic agonist carbachol (CCh) and various agonists and antagonists on neuronal activity in rat neocortical slices using intracellular (sharp microelectrode) and field potential recordings.</p> <p>Results</p> <p>CCh increased neuronal firing but reduced synaptic transmission. The increase of neuronal firing was antagonized by pirenzepine (M<sub>1</sub>/M<sub>4</sub> mAChRs antagonist) but not by AF-DX 116 (M<sub>2</sub>/M<sub>4</sub> mAChRs antagonist). Pirenzepine reversed the depressant effect of CCh on excitatory postsynaptic potential (EPSP) but had marginal effects when applied before CCh. AF-DX 116 antagonized the depression of EPSP when applied before or during CCh. CCh also decreased the paired-pulse inhibition of field potentials and the inhibitory conductances mediated by GABA<sub>A</sub> and GABA<sub>B</sub> receptors. The depression of paired-pulse inhibition was antagonized or prevented by AF-DX 116 or atropine but only marginally by pirenzepine. The inhibitory conductances were unaltered by xanomeline (M<sub>1</sub>/M<sub>4</sub> mAChRs agonist), yet the CCh-induced depression was antagonized by AF-DX 116. Linopirdine, a selective M-current blocker, mimicked the effect of CCh on neuronal firing. However, linopirdine had no effect on the amplitude of EPSP or on the paired-pulse inhibition, indicating that M-current is involved in the increase of neuronal excitability but neither in the depression of EPSP nor paired-pulse inhibition.</p> <p>Conclusions</p> <p>These data indicate that the three effects are mediated by different mAChRs, the increase in firing being mediated by M<sub>1</sub> mAChR, decrease of inhibition by M<sub>2</sub> mAChR and depression of excitatory transmission by M<sub>4</sub> mAChR. The depression of EPSP and increase of neuronal firing might enhance the signal-to-noise ratio, whereas the concomitant depression of inhibition would facilitate long-term potentiation. Thus, this triade of effects may represent a “neuronal correlate” of attention and learning.</p