127,533 research outputs found

    Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data

    Get PDF
    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared

    Differential Nitrous oxide emission and microbiota succession in constructed wetlands induced by nitrogen forms

    No full text
    Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3–-N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3–-N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3–-N at different COD/N ratios

    <sup>68</sup>Ga-Labeled TMTP1 Modified with d‑Amino Acid for Positron Emission Tomography Diagnosis of Highly Metastatic Hepatocellular Carcinoma

    No full text
    TMTP1 (NVVRQ) has been proven to selectively target various highly metastatic tumor cells. Nonetheless, existing TMTP1 probes encounter challenges such as rapid blood clearance, limited tumor uptake, and inadequate suitability for therapeutic interventions. To overcome these constraints, we designed and synthesized eight peptide probes, employing innovative chemical modification strategies involving d-amino acid modification and retro-inverso isomerization. Notably, [68Ga]TV2 exhibited particularly impressive performance, displaying an 88.88, 76.90, and 90.32% improvement in uptake at 15, 30, and 60 min, respectively, while maintaining a high target-to-nontarget ratio. Further research has demonstrated that [68Ga]TV2 also exhibits remarkable diagnostic potential for detecting in situ microtumors in the liver. The results suggest that through the implementation of innovative chemical modification strategies, we successfully developed a peptide precursor, NOTA-G-NVvRQ, with specific affinity for highly metastatic tumors, enhanced in vivo pharmacokinetic profile, and heightened stability in vivo, rendering it well suited for prospective investigations in combination therapy studies