1,456 research outputs found

    Delays and the Capacity of Continuous-time Channels

    Get PDF
    Any physical channel of communication offers two potential reasons why its capacity (the number of bits it can transmit in a unit of time) might be unbounded: (1) Infinitely many choices of signal strength at any given instant of time, and (2) Infinitely many instances of time at which signals may be sent. However channel noise cancels out the potential unboundedness of the first aspect, leaving typical channels with only a finite capacity per instant of time. The latter source of infinity seems less studied. A potential source of unreliability that might restrict the capacity also from the second aspect is delay: Signals transmitted by the sender at a given point of time may not be received with a predictable delay at the receiving end. Here we examine this source of uncertainty by considering a simple discrete model of delay errors. In our model the communicating parties get to subdivide time as microscopically finely as they wish, but still have to cope with communication delays that are macroscopic and variable. The continuous process becomes the limit of our process as the time subdivision becomes infinitesimal. We taxonomize this class of communication channels based on whether the delays and noise are stochastic or adversarial; and based on how much information each aspect has about the other when introducing its errors. We analyze the limits of such channels and reach somewhat surprising conclusions: The capacity of a physical channel is finitely bounded only if at least one of the two sources of error (signal noise or delay noise) is adversarial. In particular the capacity is finitely bounded only if the delay is adversarial, or the noise is adversarial and acts with knowledge of the stochastic delay. If both error sources are stochastic, or if the noise is adversarial and independent of the stochastic delay, then the capacity of the associated physical channel is infinite

    Communication Complexity of Permutation-Invariant Functions

    Full text link
    Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of "permutation-invariant" functions. A partial function f:{0,1}nΓ—{0,1}nβ†’{0,1,?}f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\} is permutation-invariant if for every bijection Ο€:{1,…,n}β†’{1,…,n}\pi:\{1,\ldots,n\} \to \{1,\ldots,n\} and every x,y∈{0,1}n\mathbf{x}, \mathbf{y} \in \{0,1\}^n, it is the case that f(x,y)=f(xΟ€,yΟ€)f(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}^{\pi}, \mathbf{y}^{\pi}). Most of the commonly studied functions in communication complexity are permutation-invariant. For such functions, we present a simple complexity measure (computable in time polynomial in nn given an implicit description of ff) that describes their communication complexity up to polynomial factors and up to an additive error that is logarithmic in the input size. This gives a coarse taxonomy of the communication complexity of simple functions. Our work highlights the role of the well-known lower bounds of functions such as 'Set-Disjointness' and 'Indexing', while complementing them with the relatively lesser-known upper bounds for 'Gap-Inner-Product' (from the sketching literature) and 'Sparse-Gap-Inner-Product' (from the recent work of Canonne et al. [ITCS 2015]). We also present consequences to the study of communication complexity with imperfectly shared randomness where we show that for total permutation-invariant functions, imperfectly shared randomness results in only a polynomial blow-up in communication complexity after an additive O(log⁑log⁑n)O(\log \log n) overhead

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201
    • …
    corecore