3,079 research outputs found

    Diagnosis of weaknesses in modern error correction codes: a physics approach

    Full text link
    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the Bit-Error-Rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.Comment: 9 pages, 8 figure

    Renormalized non-modal theory of the kinetic drift instability of plasma shear flows

    Full text link
    The linear and renormalized nonlinear kinetic theory of drift instability of plasma shear flow across the magnetic field, which has the Kelvin's method of shearing modes or so-called non-modal approach as its foundation, is developed. The developed theory proves that the time-dependent effect of the finite ion Larmor radius is the key effect, which is responsible for the suppression of drift turbulence in an inhomogeneous electric field. This effect leads to the non-modal decrease of the frequency and growth rate of the unstable drift perturbations with time. We find that turbulent scattering of the ion gyrophase is the dominant effect, which determines extremely rapid suppression of drift turbulence in shear flow

    All-electrical time-resolved spin generation and spin manipulation in n-InGaAs

    Full text link
    We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the [11ˉ0][1\bar10] crystal axis creates a current induced spin polarization (CISP) which is oriented in the plane of the sample. The subsequent electric field pulse along [110] generates a perpendicular magnetic field pulse leading to a coherent precession of this spin polarization with 2-dimensional electrical control over the final spin orientation. Spin precession is probed by time-resolved Faraday rotation. We determine the build-up time of CISP during the first field pulse and extract the spin dephasing time and internal magnetic field strength during the spin manipulation pulse.Comment: 5 pages, 4 figure

    Dissipation scales of kinetic helicities in turbulence

    Full text link
    A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipation scale which is shown to coincide with the energy dissipation scale. However, it is shown using the decomposition of helicity into eigen modes of the curl operator, that viscous effects have to be taken into account for wave vector smaller than the Kolomogorov wave number in the evolution of these eigen components of the helicity.Comment: 6 pages, 2 figures, submited to Po

    Search for Non-Triggered Gamma Ray Bursts in the BATSE Continuous Records: Preliminary Results

    Get PDF
    We present preliminary results of an off-line search for non-triggered gamma-ray bursts (GRBs) in the BATSE daily records for about 5.7 years of observations. We found more GRB-like events than the yield of the similar search of Kommers et al. (1998) and extended the Log N - log P distribution down to ∌\sim 0.1 ph cm−2^{-2} s−1^{-1}. The indication of a turnover of the log N - log P at a small P is not confirmed: the distribution is straight at 1.5 decades with the power law index -.6 and cannot be fitted with a standard candle cosmological model.Comment: 4 pages, LaTeX, to appear in Proceedings "Gamma Ray Bursts in the Afterglow Era", Rome, November 1998, A&AS, 199

    Photon reabsorption in fluorescent solar collectors

    No full text
    Understanding photon transport losses in fluorescence solar collectors is very important for increasing optical efficiencies. We present an analytical expression to characterize photon reabsorption in fluorescent solar collectors, which represent a major source of photon loss. A particularly useful universal form of this expression is found in the limit of high reabsorption, which gives the photon reabsorption probability in a simple form as a function of the absorption coefficient and the optical Ă©tendue of the emitted photon beam. Our mathematical model predicts fluorescence spectra emitted from the collector edge, which are in excellent agreement with experiment and provide an effective characterization tool for photon transport in light absorbing media

    Self field measurements by Hall sensors on the SeCRETS short sample CICC's subjected to cyclic load

    Get PDF
    An imbalance in the transport current among the strands of a Cable-in-Conduit conductors (CICC) can be associated with the change of their performance. In order to understand and improve the performance of CICC's, it is essential to study the current imbalance. This paper focuses on the study of the current imbalance in two short samples of the SeCRETS (Segregated Copper Ratio Experiment on Transient Stability) conductors subjected to a cyclic load in the SULTAN facility. The self field around the conductors was measured on four locations by 32 miniature Hall sensors for a reconstruction of the current distribution. The results of the self field measurements in the DC tests are presented and discussed