1,437 research outputs found

    The GENGA Code: Gravitational Encounters in N-body simulations with GPU Acceleration

    Full text link
    We describe an open source GPU implementation of a hybrid symplectic N-body integrator, GENGA (Gravitational ENcounters with Gpu Acceleration), designed to integrate planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. GENGA uses a hybrid symplectic integrator to handle close encounters with very good energy conservation, which is essential in long-term planetary system integration. We extended the second order hybrid integration scheme to higher orders. The GENGA code supports three simulation modes: Integration of up to 2048 massive bodies, integration with up to a million test particles, or parallel integration of a large number of individual planetary systems. We compare the results of GENGA to Mercury and pkdgrav2 in respect of energy conservation and performance, and find that the energy conservation of GENGA is comparable to Mercury and around two orders of magnitude better than pkdgrav2. GENGA runs up to 30 times faster than Mercury and up to eight times faster than pkdgrav2. GENGA is written in CUDA C and runs on all NVIDIA GPUs with compute capability of at least 2.0.Comment: Accepted by ApJ. 18 pages, 17 figures, 4 table

    On the age-radius relation and orbital history of cluster galaxies

    Full text link
    We explore the region of influence of a galaxy cluster using numerical simulations of cold dark matter halos. Many of the observed galaxies in a cluster are expected to be infalling for the first time. Half of the halos at distances of one to two virial radii today have previously orbited through the cluster, most of them have even passed through the dense inner regions of the cluster. Some halos at distances of up to three times the virial radius have also passed through the cluster core. We do not find a significant correlation of ``infall age'' versus present day position for substructures and the scatter at a given position is very large. This relation may be much more significant if we could resolve the physically overmerged galaxies in the central region.Comment: To appear in the proceedings of IAU Colloquium 195: "Outskirts of galaxy clusters: intense life in the suburbs", Torino, Italy, March 12-16, 200

    A universal density slope - velocity anisotropy relation

    Full text link
    One can solve the Jeans equation analytically for equilibrated dark matter structures, once given two pieces of input from numerical simulations. These inputs are 1) a connection between phase-space density and radius, and 2) a connection between velocity anisotropy and density slope, the \alpha-\beta relation. The first (phase-space density v.s. radius) has been analysed through several different simulations, however the second (\alpha-\beta relation) has not been quantified yet. We perform a large set of numerical experiments in order to quantify the slope and zero-point of the \alpha-\beta relation. When combined with the assumption of phase-space being a power-law in radius this allows us to conclude that equilibrated dark matter structures indeed have zero central velocity anisotropy, central density slope of \alpha_0 = -0.8, and outer anisotropy of approximately \beta_\infinity = 0.5.Comment: 4 pages, 1 figure, to appear in the XXIst IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures", Paris 4-9 July 2005, France, (Eds.) G. Mamon, F. Combes, C. Deffayet, B. Fort, EAS Publications Serie

    A universal velocity distribution of relaxed collisionless structures

    Full text link
    Several general trends have been identified for equilibrated, self-gravitating collisionless systems, such as density or anisotropy profiles. These are integrated quantities which naturally depend on the underlying velocity distribution function (VDF) of the system. We study this VDF through a set of numerical simulations, which allow us to extract both the radial and the tangential VDF. We find that the shape of the VDF is universal, in the sense that it depends only on two things namely the dispersion (radial or tangential) and the local slope of the density. Both the radial and the tangential VDF's are universal for a collection of simulations, including controlled collisions with very different initial conditions, radial infall simulation, and structures formed in cosmological simulations.Comment: 13 pages, 6 figures; oversimplified analysis corrected; changed abstract and conclusions; significantly extended discussio

    Cold Dark Matter Substructures in Early-Type Galaxy Halos

    Full text link
    We present initial results from the "Ponos" zoom-in numerical simulations of dark matter substructures in massive ellipticals. Two very highly resolved dark matter halos with Mvir=1.2×1013M_{\rm vir}=1.2\times 10^{13} M⊙M_{\odot} and Mvir=6.5×1012M_{\rm vir}=6.5\times 10^{12} M⊙M_{\odot} and different ("violent" vs. "quiescent") assembly histories have been simulated down to z=0z=0 in a Λ\LambdaCDM cosmology with a total of 921,651,914 and 408,377,544 particles, respectively. Within the virial radius, the total mass fraction in self-bound Msub>106M_{\rm sub}>10^6 M⊙M_{\odot} subhalos at the present epoch is 15% for the violent host and 16.5% for the quiescent one. At z=0.7z=0.7, these fractions increase to 19 and 33%, respectively, as more recently accreted satellites are less prone to tidal destruction. In projection, the average fraction of surface mass density in substructure at a distance of R/Rvir=0.02R/R_{\rm vir}=0.02 (∼5−10\sim 5-10 kpc) from the two halo centers ranges from 0.6% to ≳2\gtrsim 2%, significantly higher than measured in simulations of Milky Way-sized halos. The contribution of subhalos with Msub<109M_{\rm sub} < 10^9 M⊙M_{\odot} to the projected mass fraction is between one fifth and one third of the total, with the smallest share found in the quiescent host. We assess the impact of baryonic effects via twin, lower-resolution hydrodynamical simulations that include metallicity-dependent gas cooling, star formation, and a delayed-radiative-cooling scheme for supernova feedback. Baryonic contraction produces a super-isothermal total density profile and increases the number of massive subhalos in the inner regions of the main host. The host density profiles and projected subhalo mass fractions appear to be broadly consistent with observations of gravitational lenses.Comment: 14 pages, 15 figures, accepted for publication in ApJ after minor revisions, note the new Fig.
    • …
    corecore