5 research outputs found

    Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply

    No full text
    Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s ( ), R s at a reference soil temperature (10°C; ) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 ÎŒmol CO2 m−2 s−1, 0.3 to 5.5 ÎŒmol CO2 m−2 s−1 and 58 to 1988 g C m−2 y−1, respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites was closely related to . Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s. Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO2 emissions at various timescales

    The Legume–Rhizobia Symbiosis

    No full text
    The symbiotic nitrogen fixation (SNF) with legumes is the primary source of biologically fixed nitrogen for agricultural system. It is performed by a group of bacteria commonly called rhizobia. It is characterized by a host preference, and the differences among symbioses between rhizobial strains and legume genotypes are related to infection, nodule development and effectiveness in N2 fixation. The interaction between a rhizobia and the legume is mediated by a lipochitin oligosaccharide secreted by the rhizobia, and called “Nod factor”. It is recognized by transmembrane receptors on the root-hair cells of the legume. It can regulate the nodule organogenesis by inducing changes in the cytokinin balance of the root, during nodule initiation. N2 fixation in legume nodules is catalyzed by the nitrogenase enzyme depending upon the photosynthate supply, the O2 concentration, and the fixed-N export. Among environmental factors that influence the SNF, the temperature is essential for nodule formation; the salinity and drought decrease the nodule permeability to O2 and the photosynthate supply to the nodule, the phosphorus deficiency inhibits the nodule development and the total N2 fixation. Rhizobia strains differ in their efficiency in N2 fixation with host legume. There is evidence of genotypic variability for SNF at different levels of available P which show a possibility of selecting cultivars able to support biological N2 fixation under low P soils