187 research outputs found

    Separating astrophysical sources from indirect dark matter signals

    Get PDF
    Indirect searches for products of dark matter annihilation and decay face the challenge of identifying an uncertain and subdominant signal in the presence of uncertain backgrounds. Two valuable approaches to this problem are (1) using analysis methods which take advantage of different features in the energy spectrum and angular distribution of the signal and backgrounds, and (2) more accurate characterization of backgrounds, which allows for more robust identification of possible signals. These two approaches are complementary and can be significantly strengthened when used together. I review the status of indirect searches with gamma rays using two promising targets, the Inner Galaxy and the Isotropic Gamma-Ray Background. For both targets, uncertainties in the properties of backgrounds is a major limitation to the sensitivity of indirect searches. I then highlight approaches which can enhance the sensitivity of indirect searches using these targets.Comment: 7 pages, 4 figures. Contributed to the National Academy of Sciences' Dark Matter Sackler Colloquiu

    Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    Get PDF
    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes |b|>30° in four energy bins spanning 1–50 GeV. At multipoles ℓ≥155, corresponding to angular scales ≲2°, angular power above the photon noise level is detected at >99.99%  confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at >99% confidence level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ≥155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C_P/⟨I⟩^2=9.05±0.84×10^(-6)  sr, while the energy dependence of C_P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ_s=2.40±0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background

    Joint anisotropy and source count constraints on the contribution of blazars to the diffuse gamma-ray background

    Get PDF
    We place new constraints on the contribution of blazars to the large-scale isotropic gamma-ray background (IGRB) by jointly analyzing the measured source count distribution (logN-logS) of blazars and the measured intensity and anisotropy of the IGRB. We find that these measurements point to a consistent scenario in which unresolved blazars make less than 20% of the IGRB intensity at 1-10 GeV while accounting for the majority of the measured anisotropy in that energy band. These results indicate that the remaining fraction of the IGRB intensity is made by a component with a low level of intrinsic anisotropy. We determine upper limits on the anisotropy from non-blazar sources, adopting the best-fit parameters of the measured source count distribution to calculate the unresolved blazar anisotropy. In addition, we show that the anisotropy measurement excludes some recently proposed models of the unresolved blazar population.Comment: 7 pages, 4 figures. v2: new section (Sec.III) and 2 figures added. Expanded discussions in the other sections. Results and conclusions unchanged. New Section III is also a reply to the comment of Harding & Abazajian arXiv:1204.3870 on this wor

    In Silico Synchronization of Cellular Populations Through Expression Data Deconvolution

    Full text link
    Cellular populations are typically heterogenous collections of cells at different points in their respective cell cycles, each with a cell cycle time that varies from individual to individual. As a result, true single-cell behavior, particularly that which is cell-cycle--dependent, is often obscured in population-level (averaged) measurements. We have developed a simple deconvolution method that can be used to remove the effects of asynchronous variability from population-level time-series data. In this paper, we summarize some recent progress in the development and application of our approach, and provide technical updates that result in increased biological fidelity. We also explore several preliminary validation results and discuss several ongoing applications that highlight the method's usefulness for estimating parameters in differential equation models of single-cell gene regulation.Comment: accepted for the 48th ACM/IEEE Design Automation Conferenc

    The Fermi Large Area Telescope on Orbit: Event Classification, Instrument Response Functions, and Calibration

    Get PDF
    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources

    Signatures of LCDM substructure in tidal debris

    Full text link
    In the past decade, surveys of the stellar component of the Galaxy have revealed a number of streams from tidally disrupted dwarf galaxies and globular clusters. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the effects of dark matter substructure on tidal streams by simulating the disruption of a self-gravitating satellite on a wide range of orbits in different host models both with and without substructure. We find that the halo shape and the specific orbital path more strongly determine the overall degree of disruption of the satellite than does the presence or absence of substructure, i.e., the changes in the large-scale properties of the tidal debris due to substructure are small compared to variations in the debris from different orbits in a smooth potential. Substructure typically leads to an increase in the degree of clumpiness of the tidal debris in sky projection, and in some cases a more compact distribution in line-of-sight velocity. Substructure also leads to differences in the location of sections of debris compared to the results of the smooth halo model, which may have important implications for the interpretation of observed tidal streams. A unique signature of the presence of substructure in the halo which may be detectable by upcoming surveys is identified. We conclude, however, that predicted levels of substructure are consistent with a detection of a coherent tidal stream from a dwarf galaxy.Comment: 15 pages, 13 figures, accepted for publication in ApJ. Matches accepted versio

    Robust identification of isotropic diffuse gamma rays from Galactic dark matter

    Get PDF
    Dark matter annihilation in Galactic substructure will produce diffuse gamma-ray emission of remarkably constant intensity across the sky, making it difficult to disentangle this Galactic dark matter signal from the extragalactic gamma-ray background. We show that if Galactic dark matter contributes a modest fraction of the measured emission in an energy range accessible to the Fermi Gamma-ray Space Telescope, the energy dependence of the angular power spectrum of the total measured emission could be used to confidently identify gamma rays from Galactic dark matter substructure.Comment: 4 pages, 2 figures, added 1 reference, published in PR
    corecore