1,272 research outputs found

    Satellite observed aboveground carbon dynamics in Africa during 2003–2021

    No full text
    Vegetation dynamics in the African continent play an important role in the global terrestrial carbon cycle. Above-ground biomass carbon (AGC) stocks in Africa are sensitive to drought, fires and anthropogenic disturbances, and can be increased from forest restoration and tree plantation. However, there are large uncertainties in estimating changes that have occurred in AGC stocks in Africa over the past decades. Here, we used a microwave remote sensing-based vegetation index named Vegetation Optical Depth produced from X-band observations by INRAE Bordeaux (IB X-VOD) to describe the AGC dynamics in Africa covering recent decades. From 2003 to 2021, African AGC showed a net increase at a rate of +0.06 [+0.04, +0.07] PgC·yr−1 (the range represents the minimum and maximum AGC changes estimated by four calibrations), resulting from a large carbon gain of +0.55 [+0.46, +0.60] PgC·yr−1 during the first decade of the twenty-first century (period 1: 2003–2010) and a much weaker increase of +0.05 [+0.04, +0.07] PgC·yr−1 over the recent decade (period 2: 2013–2021). AGC gains were mainly found in non-forest woody areas, which contributed the most to the AGC changes during 2003–2021. Rainforests showed a minor AGC loss of −0.02 [−0.03, −0.02] PgC·yr−1, which emphasizes the need for forest conservation in Africa. Relationships between the AGC changes and potential forcing climate or anthropogenic variables suggested that human-induced deforestation and water stress (especially the vapor pressure deficit (VPD)) are the most important variables explaining the spatial and temporal AGC variations, respectively. For areas of rainforests, we identified a strong relationship between AGC and VPD (negative), soil moisture (positive) and radiation (positive). For areas of sparse vegetation (mainly located in drylands), AGC changes are largely dominated by changes in the soil water conditions. This study presents a new dataset for monitoring AGC dynamics at a continental scale over recent decades being independent of optical observations, quantifying the impacts of anthropogenic pressure and water stress on aboveground biomass carbon changes

    Rapid and effective treatment of chronic osteomyelitis by conductive network-like MoS2/CNTs through multiple reflection and scattering enhanced synergistic therapy

    No full text
    Staphylococcus aureus (S. aureus)-infected chronic osteomyelitis (COM) is one of the most devastating infectious diseases with a high recurrence rate, often leading to amputation and even death. It is incurable by all the current strategies involving the clinical use of radical debridement and systemic intravenous antibiotics. Here, we reported on a microwave (MW)-assisted therapy for COM by constructing a heterojunction formed by flake nanoflower-shaped molybdenum disulfide (MoS2) and tubular carbon nanotubes (CNTs). This composite could achieve a combination of MW thermal therapy (MTT) and MW dynamic therapy (MDT) to accurately and rapidly treat COM with deep tissue infection. In vitro and in vivo experiments showed that MoS2/CNTs were effective in non-invasively treating S. aureus-induced COM due to the heat and reactive oxygen species (ROS) produced under MW irradiation. The mechanism of heat and ROS generation was explained by MW network vector analysis, density of states (DOS), oxygen adsorption energy, differential charge and finite element (FEM) under MW irradiation. Since the Fermi layer was mainly contributed by the Mo-4d and C–2P orbitals, MoS2/CNTs could store a large amount of charge and easily release more electrons. In addition, charge accumulation and dissipation motion were strong on the surface of and inside MoS2/CNTs because of electromagnetic hot spots, resulting in the spilling out of a great deal of high-energy electrons. Due to the low oxygen adsorption energy of MoS2/CNTs-O2, these high-energy electrons combined further with the adsorbed oxygen to produce ROS

    Image_2_Analysis of serum antioxidant capacity and gut microbiota in calves at different growth stages in Tibet.png

    No full text
    IntroductionThe hypoxic environment at high altitudes poses a major physiological challenge to animals, especially young animals, as it disturbs the redox state and induces intestinal dysbiosis. Information about its effects on Holstein calves is limited.MethodsHere, serum biochemical indices and next-generation sequencing were used to explore serum antioxidant capacity, fecal fermentation performance, and fecal microbiota in Holstein calves aged 1, 2, 3, 4, 5, and 6 months in Tibet.Results and DiscussionSerum antioxidant capacity changed with age, with the catalase and malondialdehyde levels significantly decreasing (p  0.05) in total volatile fatty acid levels were noted between the groups. In all groups, Firmicutes, Bacteroidetes, and Actinobacteria were the three most dominant phyla in the gut. Gut microbial alpha diversity significantly increased (p < 0.05) with age. Principal coordinate analysis plot based on Bray–Curtis dissimilarity revealed significant differences (p = 0.001) among the groups. Furthermore, the relative abundance of various genera changed dynamically with age, and the serum antioxidant capacity was associated with certain gut bacteria. The study provides novel insights for feeding Holstein calves in high-altitude regions.</p

    A High-Gain DC-DC Converter with a Wide Range of Output Voltage

    No full text
    In fuel-cell-powered electric vehicles, the output characteristics of the fuel cell are relatively soft, and the output voltage is unstable. Therefore, a DC-DC converter is required between the fuel cell and the inverter to transform the output voltage of the fuel cell into a suitable voltage for the motor drive. Existing non-isolated DC-DC converters cannot meet the requirements of high voltage gain, high efficiency and a wide range of output voltage simultaneously. To improve these performances, a high-gain DC-DC converter with a wide range of output voltage, based on a switched capacitor structure, is proposed in this paper. The converter supplies power to the load by connecting multiple capacitors with the input source in series in switch-on states, while the input source charges the capacitors through a series connection with an inductor in switch-off states. In comparison to existing converters, the proposed converter maintains high voltage gain at lower duty ratios and offers a wide range of output voltage. The operating principles, key waveforms and parameter design of the topology in Continuous Conduction Mode (CCM) are described and analyzed in detail, and the voltage gain of the proposed converter is compared with some other DC-DC converters. Finally, the results of simulations using Simulink and hardware experiments that were conducted to validate the theoretical analysis are described

    Anthropogenic disturbance exacerbates resilience loss in the Amazon rainforests

    No full text
    Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag‐1 month temporal autocorrelation (TAC), to vegetation optical depth data in C‐band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human‐disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human‐disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human‐disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests

    The Paradigm Theory and Judgment Conditions of Geophysical Parameter Retrieval Based on Artificial Intelligence

    No full text
    目的/意义人工智能(Artificial Intelligence,AI)技术已在学术和工程应用领域掀起了研究高潮,在地球物理参数和农业气象遥感参数反演方面也表现出了强大的应用潜力。目前大部分AI技术在地学和农学的应用还是“黑箱”,没有物理意义或缺乏可解释性及通用性。为了促进AI在地学和农学的应用和培养交叉学科的人才,本研究提出基于AI耦合物理和统计方法的地球物理参数反演范式理论。方法首先基于物理能量平衡方程进行物理逻辑推理,从理论上构造反演方程组,然后基于物理推导构建泛化的统计方法。通过物理模型模拟获得物理方法的代表性解以及利用多源数据获得统计方法代表性的解作为深度学习的训练和测试数据库,最后利用深度学习进行优化求解。[结果和讨论]判定形成具有通用性和物理可解释的范式条件包括:(1)输入与输出变量(参数)之间必须存在因果关系;(2)输入和输出变量(参数)之间理论上可以构建闭合的方程组(未知数个数少于或等于方程组个数),也就是说输出参数可以被输入参数唯一确定。如果输入参数(变量)和输出参数(变量)之间存在很强的因果关系,则可以直接使用深度学习进行反演。如果输入参数和输出参数之间存在弱相关性,则需要添加先验知识来提高输出参数的反演精度。此外,本研究以农业气象遥感中的关键参数地表温度、发射率、近地表空气温度和大气水汽含量联合反演作为案例对理论进行了证明,分析结果表明本理论是可行的,并且可以辅助优化设计卫星传感器波段组合。结论本理论和判定条件的提出在地球物理参数反演史上具有里程碑意义

    The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro

    No full text
    Grape seed proanthocyanidin (GSP) contains polyphenolic bioflavonoids ubiquitously found in the lignified portions of grape seeds from the winery and distillery industries, as an antioxidant. To explore its potential as a rumen modifier in methanogenesis inhibition, a 2 × 5 factorial experiment was conducted to determine the effect of GSP at 0, 15, 30, 60 and 120 mg/g of substrate on the rumen fermentation and methanogenesis of two representative total mixed rations (HY, a diet for high-yield (>2 kg/d) lactating cows, and LY, a diet for low-yield (p 4 proportion was significantly reduced with both 60 and 120 mg GSP addition (p p p Methanobrevibacter genus (>72.5%), followed by Methanomassiliicoccus (>20.9%) and Methanosphaera (>1.0%). Methanobrevibacter could play an important role in methanogenesis in the presence of GSP, though it is usually considered to be the main hydrogenotrophic methanogen. In brief, the GSP addition presented high potential as a rumen modifier to mitigate methanogenesis by decreasing the ratio of methanogens to total bacteria. Methanobrevibacter could play an important role in methanogenesis in the presence of GSP. However, a relatively low administration level of GSP should be taken into consideration in order to obtain its inhibitory effect on CH4 emission, with a minimal negative effect on rumen digestion and fermentation

    Feeding Corn Silage or Grass Hay as Sole Dietary Forage Sources: Overall Mechanism of Forages Regulating Health-Promoting Fatty Acid Status in Milk of Dairy Cows

    No full text
    Different dietary forage sources regulate health-promoting fatty acids (HPFAs), such as conjugated linoleic acids (CLAs) and omega-3 polyunsaturated fatty acids (n-3 PUFAs), in the milk of lactating cows. However, the overall mechanism of forages regulating lipid metabolism from the gastrointestinal tract to the mammary glands (MGs) is not clear. Three isocaloric diets that contained (1) 46% corn silage (CS), (2) a mixture of 23% corn silage and 14% grass hays (MIX), and (3) 28% grass hays (GH) as the forage sources and six cannulated (rumen, proximal duodenum, and terminal ileum) lactating cows were assigned to a double 3 × 3 Latin square design. Our results show that a higher proportion of grass hay in the diets increased the relative contents of short-chain fatty acids (SCFAs), CLAs, and n-3 PUFAs. The lower relative content of SCFA in the milk of CS was predominantly due to the reduction in acetate production in the rumen and arteriovenous differences in the MG, indicating that the de novo synthesis pathways were inhibited. The elevated relative contents of total CLA and n-3 PUFA in the milk of GH were attributed to the increases in apparent intestinal digestion and arteriovenous differences in total CLA and n-3 PUFA, together with the higher Δ9-desaturase activity in the MG. In conclusion, this study provides an overall mechanism of dietary forages regulating HPFA status in the milk of dairy cows
    corecore