24,149 research outputs found

    Fuzzy-model-based robust fault detection with stochastic mixed time-delays and successive packet dropouts

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper is concerned with the network-based robust fault detection problem for a class of uncertain discrete-time Takagi–Sugeno fuzzy systems with stochastic mixed time delays and successive packet dropouts. The mixed time delays comprise both the multiple discrete time delays and the infinite distributed delays. A sequence of stochastic variables is introduced to govern the random occurrences of the discrete time delays, distributed time delays, and successive packet dropouts, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fuzzy fault detection filter such that the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fuzzy fault detection filters, and then, the corresponding solvability conditions for the desired filter gains are established. In addition, the optimal performance index for the addressed robust fuzzy fault detection problem is obtained by solving an auxiliary convex optimization problem. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the National Natural Science Foundation of China under Grant 61028008, 60825303, 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University), Ministry of Education, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the University of Hong Kong under Grant HKU/CRCG/200907176129 and the Alexander von Humboldt Foundation of Germany

    Regulation of Topoisomerase IIa expression in humans : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Palmerston North, New Zealand

    Get PDF
    In mammalian cells, the loss or down-regulation of tumour-suppressor genes and/or the mutation or overexpression of proto-oncogenes, whose products promote unregulated proliferation in cells, characterise the process of malignant transformation. This generates mitogenic signals that promote abnormal cell growth resulting in tumour progression. Topoisomerase IIα (topo IIα) is an enzyme present in elevated concentrations in highly proliferating cells due to the requirement for untwisting and unknotting of the DNA which is essential for replication. Because of this requirement, a number of anti-cancer drugs have been designed with topo IIα as their primary target. The effectiveness of these drugs however is limited by the development of resistance. One factor linked to drug resistance is the down-regulation of topo IIα at the transcription level. Expression of topo IIα appears to be regulated through various transcription factors with members of the Spl family having a major contribution. Previous work has shown down regulation of topo IIα can occur at the level of transcription. Nucleotide sequencing of the topo IIα promoter in drug-resistant cell lines has not revealed any mutations thus far. Three known proteins and one uncharacterised protein are capable of interacting with the proximal topo IIα promoter region. The uncharacterised protein may act as a co-activator or a co-repressor depending on the complement of transcription factors associated with the DNA in this region. Because drug resistant cell lines showed modulated expression of these transcription factors, it is important to identify the unknown protein and characterise its role in regulating topo IIα expression. This research aimed to identify the minimal binding site and DNA elements required for the uncharacterised protein to bind, as well as introduce mutations into this proximal region and examine their functional significance. The results of this study could provide insights into the molecular mechanisms responsible for the development of drug resistance, contributing to more efficient and effective methods for the treatment of cancer

    Effects of culivation conditions for apples on growth rates of fruit fly larvae and contents of phenolics

    Get PDF
    The different cultivation treatments significantly and systematically affected both rate of development of fruit fly larvae and contents of phenolic compounds, but not the total number of flies produced. This is in accordance with the hypothesis that cultivation methods can give large enough changes in composition of plant foods to affect physiological aspects important for health of consumers. It indicates that further stusies should be made of the links between plant cultivation, plant composition and health, for example regarding the question of the nutritional value of organic versus conventional food

    Robust H∞ filtering for markovian jump systems with randomly occurring nonlinearities and sensor saturation: The finite-horizon case

    Get PDF
    This article is posted with the permission of IEEE - Copyright @ 2011 IEEEThis paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303, and 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Sensory quality of scab-resistant apple cultivars

    Get PDF
    Twenty-two scab-resistant apple cultivars were harvested in autumn 1999 and evaluated for sensory quality the following October, November and December. Multivariate analysis was effective in describing the comblex relationships and variabillity among the numerous attributes used to characterise apple quality. Crispness, mealiness, skin toughness, apple flavour, sweetness, unripe flavour and overripe flavour were informative attributes describing the variation in the sensory quality. Texture attributes, apple flavour and overripe flavour were affected by storage. Extended storage resulted in an increase in mealiness and overripe flavour and a decrease in crispness, juiciness and apple flavour. Many potential scab-resistant cultivars were suitable for consumption in October: 'Dayton', 'Primicia', 'Retina' and 'Realka'; in November: 'Merlijn', 'Saturn', 'Initial', 'Realka', 'Rajka' and 'Rubinola'; and in December: 'Otava', 'Ecolette', 'Rejka', 'Rubinola', 'Delorina', 'Initial' and 'Resista' and 'Topaz'. This study gives a sensory sharacterisation of scab-resistant cultivars as an indicator of suitability for commercial growing and marketing of low-input apple cultivars

    Multi Agent Modelling: Evolution and Skull Thickness in Hominids

    Get PDF
    Within human evolution, the period of Homo Erectus is particularly interesting since in this period, our ancestors have carried thicker skulls than the species both before and after them. There are competing theories as to the reasons of this enlargement and its reversal. One of these is the theory that Homo Erectus males fought for females by clubbing each other on the head. The other one says that due to the fact that Homo Erectus’ did not cook their food at all, they had to have strong jaw muscles attached to ridges on either side of the skull which prohibited brain and skull growth but required the skull to be thick. The re-thinning of the skull on the other hand might be due to the fact that a thick skull provided poor cooling for the brain or that as hominids started using tools to cut their food and using fire to cook it, they did not require the strong jaw muscles anymore and this trait was actually selected against since the brain had a tendency to grow and the ridges and a thick skull were preventing this. In this paper we simulated both the fighting and the diet as ways in which the hominid skull grew thicker. We also added other properties such as cooperation, selfishness and vision to our agents and analyzed their changes over generations. Keywords: Evolution, Skull Thickness, Hominids, Multi-Agent Modeling, Genetic Algorithm

    Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results

    Pairwise Check Decoding for LDPC Coded Two-Way Relay Block Fading Channels

    Full text link
    Partial decoding has the potential to achieve a larger capacity region than full decoding in two-way relay (TWR) channels. Existing partial decoding realizations are however designed for Gaussian channels and with a static physical layer network coding (PLNC). In this paper, we propose a new solution for joint network coding and channel decoding at the relay, called pairwise check decoding (PCD), for low-density parity-check (LDPC) coded TWR system over block fading channels. The main idea is to form a check relationship table (check-relation-tab) for the superimposed LDPC coded packet pair in the multiple access (MA) phase in conjunction with an adaptive PLNC mapping in the broadcast (BC) phase. Using PCD, we then present a partial decoding method, two-stage closest-neighbor clustering with PCD (TS-CNC-PCD), with the aim of minimizing the worst pairwise error probability. Moreover, we propose the minimum correlation optimization (MCO) for selecting the better check-relation-tabs. Simulation results confirm that the proposed TS-CNC-PCD offers a sizable gain over the conventional XOR with belief propagation (BP) in fading channels.Comment: to appear in IEEE Trans. on Communications, 201

    Error Rates of the Maximum-Likelihood Detector for Arbitrary Constellations: Convex/Concave Behavior and Applications

    Get PDF
    Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fading is never good in low dimensions") and optimization of a unitary-precoded OFDM system. For example, the error rate bounds of a unitary-precoded OFDM system with QPSK modulation, which reveal the best and worst precoding, are extended to arbitrary constellations, which may also include coding. The reported results also apply to the interference channel under Gaussian approximation, to the bit error rate when it can be expressed or approximated as a non-negative linear combination of individual symbol error rates, and to coded systems.Comment: accepted by IEEE IT Transaction

    An Interaction Model for Simulation and Mitigation of Cascading Failures

    Full text link
    In this paper the interactions between component failures are quantified and the interaction matrix and interaction network are obtained. The quantified interactions can capture the general propagation patterns of the cascades from utilities or simulation, thus helping to better understand how cascading failures propagate and to identify key links and key components that are crucial for cascading failure propagation. By utilizing these interactions a high-level probabilistic model called interaction model is proposed to study the influence of interactions on cascading failure risk and to support online decision-making. It is much more time efficient to first quantify the interactions between component failures with fewer original cascades from a more detailed cascading failure model and then perform the interaction model simulation than it is to directly simulate a large number of cascades with a more detailed model. Interaction-based mitigation measures are suggested to mitigate cascading failure risk by weakening key links, which can be achieved in real systems by wide area protection such as blocking of some specific protective relays. The proposed interaction quantifying method and interaction model are validated with line outage data generated by the AC OPA cascading simulations on the IEEE 118-bus system.Comment: Accepted by IEEE Transactions on Power System
    corecore