132 research outputs found

    Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence?

    Get PDF
    Standard laboratory coagulation tests (SLTs) such as prothrombin time/international normalized ratio or partial thromboplastin time are frequently used to assess coagulopathy and to guide haemostatic interventions. However, this has been challenged by numerous reports, including the current European guidelines for perioperative bleeding management, which question the utility and reliability of SLTs in this setting. Furthermore, the arbitrary definition of coagulopathy (i.e. SLTs are prolonged by more than 1.5-fold) has been questioned. The present study aims to review the evidence for the usefulness of SLTs to assess coagulopathy and to guide bleeding management in the perioperative and massive bleeding setting. Medline was searched for investigations using results of SLTs as a means to determine coagulopathy or to guide bleeding management, and the outcomes (i.e. blood loss, transfusion requirements, mortality) were reported. A total of 11 guidelines for management of massive bleeding or perioperative bleeding and 64 studies investigating the usefulness of SLTs in this setting were identified and were included for final data synthesis. Referenced evidence for the usefulness of SLTs was found in only three prospective trials, investigating a total of 108 patients (whereby microvascular bleeding was a rare finding). Furthermore, no data from randomized controlled trials support the use of SLTs. In contrast, numerous investigations have challenged the reliability of SLTs to assess coagulopathy or guide bleeding management. There is actually no sound evidence from well-designed studies that confirm the usefulness of SLTs for diagnosis of coagulopathy or to guide haemostatic therap

    Global Characterisation of Coagulopathy in Isolated Traumatic Brain Injury (iTBI): A CENTER-TBI Analysis

    Get PDF
    Background Trauma-induced coagulopathy in patients with traumatic brain injury (TBI) is associated with high rates of complications, unfavourable outcomes and mortality. The mechanism of the development of TBI-associated coagulopathy is poorly understood. Methods This analysis, embedded in the prospective, multi-centred, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, aimed to characterise the coagulopathy of TBI. Emphasis was placed on the acute phase following TBI, primary on subgroups of patients with abnormal coagulation profile within 4 h of admission, and the impact of pre-injury anticoagulant and/or antiplatelet therapy. In order to minimise confounding factors, patients with isolated TBI (iTBI) (n = 598) were selected for this analysis. Results Haemostatic disorders were observed in approximately 20% of iTBI patients. In a subgroup analysis, patients with pre-injury anticoagulant and/or antiplatelet therapy had a twice exacerbated coagulation profile as likely as those without premedication. This was in turn associated with increased rates of mortality and unfavourable outcome post-injury. A multivariate analysis of iTBI patients without pre-injury anticoagulant therapy identified several independent risk factors for coagulopathy which were present at hospital admission. Glasgow Coma Scale (GCS) less than or equal to 8, base excess (BE) less than or equal to - 6, hypothermia and hypotension increased risk significantly. Conclusion Consideration of these factors enables early prediction and risk stratification of acute coagulopathy after TBI, thus guiding clinical management.</div

    Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study

    Get PDF
    Background: Septic coagulopathy represents a very dynamic disease entity, tilting from initial hypercoagulability towards a subsequent hypocoagulable disease state, entitled overt disseminated intravascular coagulation. Acute fibrinolysis shutdown has recently been described to be a crucial component of initial hypercoagulability in critically ill patients, although the underlying pathomechanisms, the specific temporal kinetics and its outcome relevance in patients with sepsis remain to be determined. Methods: In total, 90 patients (30 with septic shock, 30 surgical controls and 30 healthy volunteers) were enrolled. Blood samples were collected at sepsis onset or prior and immediately after the surgical procedure as well as 3 h, 6 h, 12 h, 24 h, 48 h and 7 d later, whereas blood samples from healthy volunteers were collected once. Besides viscoelastic and aggregometric point-of-care testing (POCT), enzyme-linked immunosorbent and thrombin generation assays and liquid chromatography–mass spectrometry-based measurements were performed. Results: As assessed by viscoelastic POCT, fibrinolysis shutdown occurred early in sepsis. Significant increases in tissue plasminogen activator had no effect on thromboelastometrical lysis indices (LIs). Contrariwise, plasminogen activator inhibitor-1 was already significantly increased at sepsis onset, which was paralleled by significantly increased LIs in patients suffering from septic shock in comparison with both control groups. This effect persisted throughout the 7-day observation period and was most pronounced in severely ill as well as non-surviving septic patients. Thromboelastometrical LI, therefore, proved to be suitable for early diagnosis [e.g. LI 45 min: area under the curve (AUC) up to 0.933] as well as prognosis (e.g. LI 60 min: AUC up to 1.000) of septic shock. Conclusions: Early inhibition of plasminogen activation leads to acute fibrinolysis shutdown with improved clot stability and is associated with increased morbidity and mortality in septic patients. Trial registration This study was approved by the local ethics committee (Ethics Committee of the Medical Faculty of Heidelberg; Trial-Code No. S247-2014/German Clinical Trials Register (DRKS)-ID: DRKS00008090; retrospectively registered: 07.05.2015). All study patients or their legal representatives signed written informed consent

    Early fibrinogen concentrate therapy for major haemorrhage in trauma (E-FIT 1): results from a UK multi-centre, randomised, double blind, placebo-controlled pilot trial.

    Get PDF
    BACKGROUND: There is increasing interest in the timely administration of concentrated sources of fibrinogen to patients with major traumatic bleeding. Following evaluation of early cryoprecipitate in the CRYOSTAT 1 trial, we explored the use of fibrinogen concentrate, which may have advantages of more rapid administration in acute haemorrhage. The aims of this pragmatic study were to assess the feasibility of fibrinogen concentrate administration within 45 minutes of hospital admission and to quantify efficacy in maintaining fibrinogen levels ≥ 2 g/L during active haemorrhage. METHODS: We conducted a blinded, randomised, placebo-controlled trial at five UK major trauma centres with adult trauma patients with active bleeding who required activation of the major haemorrhage protocol. Participants were randomised to standard major haemorrhage therapy plus 6 g of fibrinogen concentrate or placebo. RESULTS: Twenty-seven of 39 participants (69%; 95% CI, 52-83%) across both arms received the study intervention within 45 minutes of admission. There was some evidence of a difference in the proportion of participants with fibrinogen levels ≥ 2 g/L between arms (p = 0.10). Fibrinogen levels in the fibrinogen concentrate (FgC) arm rose by a mean of 0.9 g/L (SD, 0.5) compared with a reduction of 0.2 g/L (SD, 0.5) in the placebo arm and were significantly higher in the FgC arm (p < 0.0001) at 2 hours. Fibrinogen levels were not different at day 7. Transfusion use and thromboembolic events were similar between arms. All-cause mortality at 28 days was 35.5% (95% CI, 23.8-50.8%) overall, with no difference between arms. CONCLUSIONS: In this trial, early delivery of fibrinogen concentrate within 45 minutes of admission was not feasible. Although evidence points to a key role for fibrinogen in the treatment of major bleeding, researchers need to recognise the challenges of timely delivery in the emergency setting. Future studies must explore barriers to rapid fibrinogen therapy, focusing on methods to reduce time to randomisation, using 'off-the-shelf' fibrinogen therapies (such as extended shelf-life cryoprecipitate held in the emergency department or fibrinogen concentrates with very rapid reconstitution times) and limiting the need for coagulation test-based transfusion triggers. TRIAL REGISTRATION: ISRCTN67540073 . Registered on 5 August 2015

    Extended Coagulation Profiling in Isolated Traumatic Brain Injury:A CENTER-TBI Analysis

    Get PDF
    Background: Trauma-induced coagulopathy in traumatic brain injury (TBI) remains associated with high rates of complications, unfavorable outcomes, and mortality. The underlying mechanisms are largely unknown. Embedded in the prospective multinational Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study, coagulation profiles beyond standard conventional coagulation assays were assessed in patients with isolated TBI within the very early hours of injury. Methods: Results from blood samples (citrate/EDTA) obtained on hospital admission were matched with clinical and routine laboratory data of patients with TBI captured in the CENTER-TBI central database. To minimize confounding factors, patients with strictly isolated TBI (iTBI) (n = 88) were selected and stratified for coagulopathy by routine international normalized ratio (INR): (1) INR &lt; 1.2 and (2) INR ≥ 1.2. An INR &gt; 1.2 has been well adopted over time as a threshold to define trauma-related coagulopathy in general trauma populations. The following parameters were evaluated: quick’s value, activated partial thromboplastin time, fibrinogen, thrombin time, antithrombin, coagulation factor activity of factors V, VIII, IX, and XIII, protein C and S, plasminogen, D-dimer, fibrinolysis-regulating parameters (thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor 1, antiplasmin), thrombin generation, and fibrin monomers. Results: Patients with iTBI with INR ≥ 1.2 (n = 16) had a high incidence of progressive intracranial hemorrhage associated with increased mortality and unfavorable outcome compared with patients with INR &lt; 1.2 (n = 72). Activity of coagulation factors V, VIII, IX, and XIII dropped on average by 15–20% between the groups whereas protein C and S levels dropped by 20%. With an elevated INR, thrombin generation decreased, as reflected by lower peak height and endogenous thrombin potential (ETP), whereas the amount of fibrin monomers increased. Plasminogen activity significantly decreased from 89% in patients with INR &lt; 1.2 to 76% in patients with INR ≥ 1.2. Moreover, D-dimer levels significantly increased from a mean of 943 mg/L in patients with INR &lt; 1.2 to 1,301 mg/L in patients with INR ≥ 1.2. Conclusions: This more in-depth analysis beyond routine conventional coagulation assays suggests a counterbalanced regulation of coagulation and fibrinolysis in patients with iTBI with hemostatic abnormalities. We observed distinct patterns involving key pathways of the highly complex and dynamic coagulation system that offer windows of opportunity for further research. Whether the changes observed on factor levels may be relevant and explain the worse outcome or the more severe brain injuries by themselves remains speculative.</p
    corecore