299 research outputs found

    Correction: The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms (vol 36, pg 1720, 2022)

    No full text
    10.1038/s41375-023-01962-5LEUKEMIA3791944-195

    Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases

    Get PDF
    Abstract Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases

    Effectiveness of an intensive care telehealth programme to improve process quality (ERIC): a multicentre stepped wedge cluster randomised controlled trial

    Get PDF

    Small hard drusen and associated factors in early seniority.

    No full text
    PurposeThe purpose of this study was to examine the ocular and systemic risk profile of the fundus phenotype ≥ 20 small hard (macular) drusen (MethodsThis single-center, cross-sectional study of 176 same-sex twin pairs aged 30 to 80 (median 60) years was a component of a framework study of the transition from not having age-related macular degeneration to having early AMD. Drusen categories assessed using fundus photography and optical coherence tomography included small hard drusen (diameter 125 μm), of which the soft drusen are compatible with a diagnosis of AMD.ResultsHaving ≥ 20 small hard drusen within or outside the macula was associated with increasing age, lower body mass index, shorter axial length, hyperopia, female sex, increasing high-density lipoprotein (HDL), high alcohol consumption, and with the presence of soft drusen.ConclusionsHaving ≥ 20 small hard drusen was associated with some AMD-related risk factors, but not with smoking, increasing body mass index, and higher blood pressure. Having ≥ 20 small hard drusen was also associated with soft drusen, in agreement with previous studies. These findings suggest that small hard drusen are not an early manifestation of AMD but the product of a distinct process of tissue alteration that promotes the development of AMD or some subtype thereof

    Characterization of Hyperreflective Dots by Structural and Angiographic Optical Coherence Tomography in Patients with Diabetic Retinopathy and Healthy Subjects

    No full text
    Hyperreflective dots are a common but highly variable feature of optical coherence tomography (OCT) scans of the retina. We studied the spatial characteristics and perfusion of hyperreflective dots using both structural and angiographic OCT B-scans of the macula in 16 eyes in 8 healthy subjects and 8 patients with diabetic retinopathy without macular edema. Hyperreflective dots were manually graded in a 1000 µm parafoveal area by number, diameter, location and perfusion status and traced through adjacent B-scans at 11 µm intervals to determine their length. Thereby, this study defined a procedure to identify granular and elongated hyperreflective elements and differentiate between presumably perfused and occluded capillaries. The latter were only found in the diabetic patients. This classification can potentially be automated to non-invasively identify capillary non-perfusion in vivo

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    Framework and baseline examination of the German National Cohort (NAKO)

    No full text
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years

    A Search for Low-mass Dark Matter via Bremsstrahlung Radiation and the Migdal Effect in SuperCDMS

    Full text link
    In this paper, we present a re-analysis of SuperCDMS data using a profile likelihood approach to search for sub-GeV dark matter particles (DM) through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that would otherwise be undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2220~\textrm{MeV}/c^2 at 2.7×1030 cm22.7 \times 10^{-30}~\textrm{cm}^2 via the bremsstrahlung channel. The Migdal channel search excludes DM masses down to 30 MeV/c230~\textrm{MeV}/c^2 at 5.0×1030 cm25.0 \times 10^{-30}~\textrm{cm}^2.Comment: This paper is being withdrawn due to an error in data selection during the analysis. Although incorrect, the limits are roughly representative of the sensitivity. The new corrected version of the result will be uploaded once read

    Long-term development of lens fluorescence in a twin cohort : Heritability and effects of age and lifestyle

    No full text
    The blue-green autofluorescence of the ocular lens increases with age, glycemia and smoking, as the irreplaceable structural proteins of the lens slowly accumulate damage from the encounter with reactive molecular species. We have conducted a prospective study of lens autofluorescence over two decades in a twin cohort. The study included 131 phakic, non-diabetic adult twins (median age at follow-up 58 years, range 41–66 years) who were examined twice at an interval of 21 years. Change in anterior lens peak autofluorescence was analyzed in relation to age, current and baseline glycemia, cumulative smoking and heritability. The level of lens autofluorescence in the study population increased as a function of age and smoking (p ≤.002), but not as a function of glycemia (p ≥.069). Lens autofluorescence remained a highly heritable trait (90.6% at baseline and 93.3% at follow-up), but whereas the combined effect of age and cumulative smoking explained 57.2% of the variance in lens autofluorescence at baseline in mid-life, it only accounted for 31.6% at followup 21 years later. From mid to late adulthood, the level of blue-green fluorescence remained overwhelmingly heritable, but became less predictable from age, smoking habits and glycemic status. Presumably, as the lens ages, its intrinsic characteristics come to dominate over environmental and systemic factors, perhaps in a prelude to the development of cataract
    corecore