4,004 research outputs found

    Genes, Environment, and Health Disparities: Risks and Benefits of Gene-Environment Interactions Research

    Get PDF
    Genes, Environment, and Health Disparities: Risks and Benefits of Gene-Environment Interactions Researc

    The semiquinone radical anion of 1,10-phenanthroline-5,6-dione: synthesis and rare earth coordination chemistry

    Get PDF
    Reduction of 1,10-phenanthroline-5,6-dione (pd) with CoCpR2 resulted in the first molecular compounds of the pd˙− semi-quinone radical anion, [CoCpR2]+[pd]˙− (R = H, (1); R = Me4, (2)). Furthermore compounds 1 and 2 were reacted with [Y(hfac)3(thf)2] (hfac = 1,1,1-5,5,5-hexafluoroacetylacetonate) to synthesise the rare earth-transition metal heterometallic compounds, [CoCpR2]+[Y(hfac)3(N,N′-pd)]˙− (R = H, (3); R = Me4, (4))

    The modular synthesis of rare earth-transition metal heterobimetallic complexes utilizing a redox-active ligand

    Get PDF
    We report a robust and modular synthetic route to heterometallic rare earth-transition metal complexes. We have used the redox-active bridging ligand 1,10-phenathroline-5,6-dione (pd), which has selective N,N′ or O,O′ binding sites as the template for this synthetic route. The coordination complexes [Ln(hfac)3(N,N’-pd)] (Ln = Y [1], Gd [2]; hfac = hexafluoroacetylacetonate) were synthesised in high yield. These complexes have been fully characterised using a range of spectroscopic techniques. Solid state molecular structures of 1 and 2 have been determined by X-ray crystallography and display different pd binding modes in coordinating and non-coordinating solvents. Complexes 1 and 2 are unusually highly coloured in coordinating solvents, for example the vis-NIR spectrum of 1 in acetonitrile displays an electronic transition centred at 587 nm with an extinction coefficient consistent with significant charge transfer. The reaction between 1 and 2 and VCp2 or VCpt2 (Cpt = tetramethylcyclopentadienyl) resulted in the isolation of the heterobimetallic complexes, [Ln(hfac)3(N,N′-O,O′-pd)VCp2] (Ln = Y [3], Gd [4]) or [Ln(hfac)3(N,N′-O,O′-pd)VCpt2] (Ln = Y [5], Gd [6]). The solid state molecular structures of 3, 5 and 6 have been determined by X-ray crystallography. The spectroscopic data on 3–6 are consistent with oxidation of V(II) to V(IV) and reduction of pd to pd2− in the heterobimetallic complexes. The spin-Hamiltonian parameters from low temperature X-band EPR spectroscopy of 3 and 5 describe a 2A1 ground state, with a V(IV) centre. DFT calculations on 3 are in good agreement with experimental data and confirm the SOMO as the dx2−y2 orbital localised on vanadium

    Structural Insights into DNA Polymerase β Deterrents for Misincorporation Support an Induced-Fit Mechanism for Fidelity

    Get PDF
    AbstractDNA polymerases generally select the correct nucleotide from a pool of structurally similar molecules to preserve Watson-Crick base-pairing rules. We report the structure of DNA polymerase β with DNA mismatches situated in the polymerase active site. This was achieved by using nicked product DNA that traps the mispair (template-primer, A-C or T-C) in the nascent base pair binding pocket. The structure of each mispair complex indicates that the bases do not form hydrogen bonds with one another, but form a staggered arrangement where the bases of the mispair partially overlap. This prevents closure/opening of the N subdomain that is believed to be required for catalytic cycling. The partially open conformation of the N subdomain results in distinct hydrogen bonding networks that are unique for each mispair. These structures define diverse molecular aspects of misinsertion that are consistent with the induced-fit model for substrate specificity

    Champ or chump? Challenge and threat states during pressurized competition

    Get PDF
    Copyright © 2013 Human Kinetics, IncThe present research examined the immediate impact of challenge and threat states on golf performance in both real competition and a laboratory-based task. In Study 1, 199 experienced golfers reported their evaluations of competition demands and personal coping resources before a golf competition. Evaluating the competition as a challenge (i.e., sufficient resources to cope with demands) was associated with superior performance. In Study 2, 60 experienced golfers randomly received challenge or threat manipulation instructions and then performed a competitive golf-putting task. Challenge and threat states were successfully manipulated and the challenge group outperformed the threat group. Furthermore, the challenge group reported less anxiety, more facilitative interpretations of anxiety, less conscious processing, and displayed longer quiet eye durations. However, these variables failed to mediate the group-performance relationship. These studies demonstrate the importance of considering preperformance psychophysiological states when examining the influence of competitive pressure on motor performance