474 research outputs found

    In-situ Estimation of Ice Crystal Properties at the South Pole Using LED Calibration Data from the IceCube Neutrino Observatory

    No full text

    Design and Performance of the mDOM Mainboard for the IceCube Upgrade

    Get PDF
    About 400 mDOMs (multi-PMT Digital Optical Modules) will be deployed as part of the IceCube Upgrade Project. The mDOMÔÇÖs high pressure-resistant glass sphere houses 24 PMTs, 3 cameras, 10 flasher LEDs and various sensors. The mDOM mainboard design was challenging due to the limited available volume and demanding engineering requirements, like the maximum overall power consumption, a minimum trigger threshold of 0.2 photoelectrons (PE), the dynamic range and the linearity requirements. Another challenge was the FPGA firmware design, dealing with about 35 Gbit/s of continuous ADC data from the digitization of the 24 PMT channels, the control of a high speed dynamic buffer and the discriminator output sampling rate of about 1GSPS. High-speed sampling of each of the discriminator outputs at ~1 GSPS improves the leading-edge time resolution for the PMT waveforms. An MCU (microcontroller unit) coordinates the data taking, the data exchange with the surface and the sensor readout. Both the FPGA firmware and MCU software can be updated remotely. After discussing the main hardware blocks and the analog frontend (AFE) design, test results will be shown, covering especially the AFE performance. Additionally, the functionality of various sensors and modules will be evaluated

    Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

    Get PDF
    The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above Ôł╝100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components

    Estimation of Xmax_{max} for air showers measured at IceCube with elevated radio antennas of a prototype surface station

    Get PDF

    Highlights from the IceCube Neutrino Observatory

    Get PDF
    As IceCube surpasses a decade of operation in the full detector configuration, results that drive forward the fields of neutrino astronomy, cosmic ray physics, multi-messenger astronomy, particle physics, and beyond continue to emerge at an accelerated pace. IceCube data is dominated by background events, and thus teasing out the signal is the common challenge to most analyses. Statistical accumulation of data, along with better understanding of the background fluxes, the detector, and continued development of our analysis tools have produced many profound results that were presented at ICRC2023. Highlights covered here include the first neutrino observation of the Galactic Plane, the first observation of a steady emission neutrino point source NGC1068, new characterizations of the cosmic ray flux and its secondary particles, and a possible new era in measuring the energy spectrum of the diffuse astrophysical flux. IceCube is poised to make more discoveries and drive fields forward in the near future with many novel analyses coming online

    Sensitivity of the IceCube-Gen2 Surface Array for Cosmic-Ray Anisotropy Studies

    Get PDF
    The energy of the transition from Galactic to extra-galactic origin of cosmic rays is one of the major unresolved issues of cosmic-ray physics. However, strong constraints can be obtained from studying the anisotropy in the arrival directions of cosmic rays. The sensitivity to cosmic-ray anisotropy is, in particular, a matter of statistics. Recently, the cosmic ray anisotropy measurements in the TeV to PeV energy range were updated from IceCube using 11 years of data. The IceCube-Gen2 surface array will cover an area about 8 times larger than the existing IceTop surface array with a corresponding increase in statistics and capability to investigate cosmic-ray anisotropy with higher sensitivity. In this contribution, we present details on the performed simulation studies and sensitivity to the cosmic-ray anisotropy signal for the IceCube-Gen2 surface array

    A multi-detector EAS reconstruction framework for IceCube

    Get PDF

    Search for the rare interactions of neutrinos from distant point sources with the IceCube Neutrino Telescope

    Get PDF
    The recent discovery and evidence of neutrino signals from distant sources, TXS 0506+056 and NGC 1068 respectively, provide opportunities to search for rare interactions of neutrinos that they might encounter on their paths. One potential scenario of interest is the interaction between neutrinos and dark matter, which is invisible and expected to be abundantly spread over the Universe. Various astrophysical observations have implied the existence of dark matter. When high-energy neutrinos from extragalactic sources interact with dark matter during their propagation, their spectra might show suppressions at specific energy ranges, where such interactions occur. These attenuation signatures from the interaction might be measurable on Earth with large neutrino telescopes such as the IceCube Neutrino Observatory. This analysis is focused on the search for rare interactions of high-energy neutrinos from the IceCube-identified astrophysical neutrino sources with dark matter in sub-GeV masses and several benchmark mediator cases using the upgoing track-like events. In this poster, sensitivity studies about the interaction of neutrinos and dark matter are presented

    Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory

    Get PDF
    IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range. We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct
    • ÔÇŽ