1,246 research outputs found

    Photoemission studies of Ga1x_{1-x}Mnx_{x}As: Mn-concentration dependent properties

    Full text link
    Using angle-resolved photoemission, we have investigated the development of the electronic structure and the Fermi level pinnning in Ga1x_{1-x}Mnx_{x}As with Mn concentrations in the range 1--6%. We find that the Mn-induced changes in the valence-band spectra depend strongly on the Mn concentration, suggesting that the interaction between the Mn ions is more complex than assumed in earlier studies. The relative position of the Fermi level is also found to be concentration-dependent. In particular we find that for concentrations around 3.5--5% it is located very close to the valence-band maximum, which is in the range where metallic conductivity has been reported in earlier studies. For concentration outside this range, larger as well as smaller, the Fermi level is found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure

    Dependence of Curie Temperature on the Thickness of Epitaxial (Ga,Mn)As Film

    Full text link
    We present the magnetotransport properties of very thin (5 to 15 nm) single (Ga,Mn)As layers grown by low temperature molecular beam epitaxy. A lower (Ga,Mn)As thickness limit of 5 nm for the ferromagnetic phase and the dependence of the Curie temperature on (Ga,Mn)As thickness are determined from electrical transport measurements. The Curie temperature is determined to be 97 K for the thinnest ferromagnetic sample and is found to decrease for increasing layer thickness. A carrier density of ~7.1×1020\times10^{20} cm3^{-3} for the 5 nm thick (Ga,Mn)As layer is determined from Hall measurements. Differences between magnetotransport properties of thick and thin (Ga,Mn)As layers are observed and discussed.Comment: 6 pages, 4 figure

    Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    Get PDF
    Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems

    Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems

    Full text link
    Diluted magnetic semiconductors (DMSs), in which magnetic elements are substituted for a small fraction of host elements in a semiconductor lattice, can become ferromagnetic when doped. In this article we discuss the physics of DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on the mechanism that cause magnetic and magnetoresistive properties to depend on doping profiles, defect distributions, gate voltage, and other system parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol. on semiconductor spintronic

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    X-ray observational signature of a black hole accretion disc in an active galactic nucleus RXJ1633+4718

    Full text link
    We report the discovery of a luminous ultra-soft X-ray excess in a radio-loud narrow-line Seyfert1 galaxy, RXJ1633+4718, from archival ROSAT observations. The thermal temperature of this emission, when fitted with a blackbody, is as low as 32.5(+8.0,-6.0)eV. This is in remarkable contrast to the canonical temperatures of ~0.1-0.2keV found hitherto for the soft X-ray excess in active galactic nuclei (AGN), and is interestingly close to the maximum temperature predicted for a postulated accretion disc in this object. If this emission is indeed blackbody in nature, the derived luminosity [3.5(+3.3,-1.5)x10^(44)ergs/s] infers a compact emitting area with a size [~5x10^(12)cm or 0.33AU in radius] that is comparable to several times the Schwarzschild radius of a black hole at the mass estimated for this AGN (3x10^6Msun). In fact, this ultra-steep X-ray emission can be well fitted as the (Compton scattered) Wien tail of the multi-temperature blackbody emission from an optically thick accretion disc, whose parameters inferred (black hole mass and accretion rate) are in good agreement with independent estimates using optical emission line spectrum. We thus consider this feature as a signature of the long-sought X-ray radiation directly from a disc around a super-massive black hole, presenting observational evidence for a black hole accretion disc in AGN. Future observations with better data quality, together with improved independent measurements of the black hole mass, may constrain the spin of the black hole.Comment: 8 pages, 4 figures, ApJ in pres

    Small and large polarons in nickelates, manganites, and cuprates

    Full text link
    By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO), Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of polarons in this cuprate family. While in LSNO and SLMO small polarons localize into ordered structures below a transition temperature, in those cuprates the polarons appear to be large, and at low T their binding energy decreases. This reflects into an increase of the polaron radius, which may trigger coherent transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of Superconductivity - Proc. "Stripes 1996" - Roma Dec 199

    Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors

    Get PDF
    We report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad agreement between theoretical expectations and measured data allows us to conclude that T_c in high-quality metallic samples increases linearly with the number of uncompensated local moments on Mn_Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport and magnetization data are consistnent with the picture in which Mn impurities incorporated during growth at interstitial Mn_I positions act as double-donors and compensate neighboring Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I antiferromagnetic coupling. These defects can be efficiently removed by post-growth annealing. Our analysis suggests that there is no fundamental obstacle to substitutional Mn_Ga doping in high-quality materials beyond our current maximum level of 6.2%, although this achievement will require further advances in growth condition control. Modest charge compensation does not limit the maximum Curie temperature possible in ferromagnetic semiconductors based on (Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction
    corecore