121 research outputs found

    The association of COVID-19 incidence with temperature, humidity, and UV radiation - A global multi-city analysis.

    No full text
    BACKGROUND AND AIM The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission

    The association of COVID-19 incidence with temperature, humidity, and UV radiation - A global multi-city analysis.

    Get PDF
    BACKGROUND AND AIM The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission

    The association of COVID-19 incidence with temperature, humidity, and UV radiation - A global multi-city analysis

    No full text
    Background and aim: The associations between COVID-19 transmission and meteorological factors are scientifically de-bated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. Methods: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time -series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear model-ling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Govern-mental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. Results: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 degrees C compared to 17.0 degrees C) and low absolute humidity (6.0 g/m(3) compared to 11.0 g/m(3)) were associated with higher COVID-19 incidence (RR temp = 1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. Conclusion: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.Y

    What else in times of COVID-19? The role of minimally invasive autopsy for the differential diagnosis of acute respiratory failure in a case of kala-azar

    Get PDF
    Visceral leishmaniasis (VL) is a chronic vector-borne zoonotic disease caused by trypanosomatids, considered endemic in 98 countries, mainly associated with poverty. About 50,000–90,000 cases of VL occur annually worldwide, and Brazil has the second largest number of cases in the world. The clinical picture of VL is fever, hepatosplenomegaly, and pancytopenia, progressing to death in 90% of cases due to secondary infections and multi-organ failure, if left untreated. We describe the case of a 25-year-old female who lived in the metropolitan area of Sao Paulo, who had recently taken touristic trips to several rural areas in Southeastern Brazil and was diagnosed post-mortem. During the hospitalization in a hospital reference for the treatment of COVID-19, the patient developed acute respiratory failure, with chest radiographic changes, and died due to refractory shock. The ultrasound-guided minimally invasive autopsy diagnosed VL (macrophages containing amastigote forms of Leishmania in the spleen, liver and bone marrow), as well as pneumonia and bloodstream infection by gram-negative bacilli

    Wildfire-related PM2.5 and health economic loss of mortality in Brazil

    No full text
    Background: Wildfire imposes a high mortality burden on Brazil. However, there is a limited assessment of the health economic losses attributable to wildfire-related fine particulate matter (PM2.5). Methods: We collected daily time-series data on all-cause, cardiovascular, and respiratory mortality from 510 immediate regions in Brazil during 2000–2016. The chemical transport model GEOS-Chem driven with Global Fire Emissions Database (GFED), in combination with ground monitored data and machine learning was used to estimate wildfire-related PM2.5 data at a resolution of 0.25° × 0.25°. A time-series design was applied in each immediate region to assess the association between economic losses due to mortality and wildfire-related PM2.5 and the estimates were pooled at the national level using a random-effect meta-analysis. We used a meta-regression model to explore the modification effect of GDP and its sectors (agriculture, industry, and service) on economic losses. Results: During 2000–2016, a total of US81.08billioneconomiclosses(US81.08 billion economic losses (US5.07 billion per year) due to mortality were attributable to wildfire-related PM2.5 in Brazil, accounting for 0.68% of economic losses and equivalent to approximately 0.14% of Brazil’s GDP. The attributable fraction (AF) of economic losses due to wildfire-related PM2.5 was positively associated with the proportion of GDP from agriculture, while negatively associated with the proportion of GDP from service. Conclusion: Substantial economic losses due to mortality were associated with wildfires, which could be influenced by the agriculture and services share of GDP per capita. Our estimates of the economic losses of mortality could be used to determine optimal levels of investment and resources to mitigate the adverse health impacts of wildfires

    Desarrollo y evaluación de propiedades físicas de un dispositivo portátil de bajo costo para la higiene bronquial

    Get PDF
    Diversas doenças respiratórias são caracterizadas por hipersecreção com necessidade de higiene brônquica (HB). Osciladores orais de alta frequência (OOAF) são dispositivos que promovem HB diária; entretanto, seu custo pode ser inviável para aquisição por pacientes com baixa renda. Os objetivos deste estudo foram: desenvolver um OOAF de baixo custo (OOAF-BC) e comparar suas propriedades físicas com as dos disponíveis comercialmente (Shaker e Flutter). O OOAF-BC foi desenvolvido com material de polivinil clorido e uma esfera de aço inoxidável. As pressões e frequências foram mensuradas nos fluxos de 4, 6, 8, 10 e 15 L/min. As pressões nos bocais foram medidas por um transdutor conectado ao computador. As frequências de oscilação foram derivadas do gráfico de pressão. A comparação dos dispositivos foi feita por Anova com post hoc de Tukey, p≤0.05. Não houve diferença entre as frequências dos três dispositivos em todos os fluxos testados. O OOAF-BC apresentou pressão mais alta comparado ao Shaker em todos os fluxos testados (4 L/min: 4,7±1,2 vs. 1,0±0,2 cmH2O; 6 L/min: 8,6±1,5 vs. 3,5±0,5 cmH2O; 8 L/min: 10,8±1,6 vs. 5,4±0.2 cmH2O; 10 L/min: 13,5±1,2 vs. 7,7±0.4 cmH2O; 15 L/min: 14,3±1,1 vs. 7,8±0,2 cmH2O; OOAF-BC vs. Shaker; p≤0.05) e nos fluxos de 10 e 15 L/min comparado ao Flutter (10 L/min: 13,5±1,2 vs. 7,5±1,2 cmH2O; 15 L/min: 14,3±1,1 vs. 8,2±1,2 cmH2O; OOAF-BC vs. Flutter, p≤0.05). O custo do OOAF-BC foi pelo menos seis vezes menor. O OOAF-BC apresentou frequências similares e pressões mais altas que os outros OOAF comercialmente disponíveis. Estudos futuros são necessários para avaliar sua eficácia clínica.Varias enfermedades respiratorias se caracterizan por hipersecreción, que requiere higiene bronquial (HB). Los osciladores orales de alta frecuencia (OOAF) son dispositivos que promueven la HB diaria; sin embargo, su costo puede no ser factible para la adquisición por parte de pacientes con bajos ingresos. Los objetivos de este estudio fueron desarrollar un OOAF de bajo costo (OOAF-BC) y comparar sus propiedades físicas con las de los disponibles comercialmente (Shaker y Flutter). El OOAF-BC se desarrolló con material de polivinilo clorado y una bola de acero inoxidable. Las presiones y frecuencias se midieron en flujos de 4, 6, 8, 10 y 15 L/min. Las presiones de la boquilla se midieron mediante un transductor conectado a la computadora. Las frecuencias de oscilación se derivaron del gráfico de presión. Se compararon los dispositivos con la utilización de Anova con post hoc de Tukey, p≤0,05. No hubo diferencias entre las frecuencias de los tres dispositivos en todos los flujos probados. El OOAF-BC mostró una presión más alta en comparación con Shaker en todos los flujos probados (4 L/min: 4,7±1,2 vs. 1,0±0,2 cmH2O; 6 L/min: 8,6±1,5 vs. 3,5±0,5 cmH2O; 8 L/min: 10,8±1,6 vs. 5,4±0,2 cmH2O; 10 L/min: 13,5±1,2 vs. 7,7±0,4 cmH2O; 15 L/min: 14,3±1,1 vs. 7,8±0,2 cmH2O; OOAF-BC vs. Shaker; p≤0,05) y con flujos de 10 y 15 L/min en comparación con Flutter (10 L/min: 13,5±1,2 vs. 7,5±1,2 cmH2O; 15 L/min: 14,3±1,1 vs. 8,2±1,2 cmH2O; OOAF-BC vs. Flutter, p≤0,05). El costo de OOAF-BC fue al menos seis veces menor. El OOAF-BC mostró frecuencias similares y presiones más altas que otros OOAF disponibles comercialmente. Se necesitan estudios futuros para evaluar su eficacia clínica.Several respiratory diseases are characterized by hypersecretion, requiring airway clearance therapy (ACT). Oral high-frequency oscillation (OHFO) devices are effective to enable daily ACT; however, they are still too expensive to become available for low-income patients. We sought to develop a low-cost device (OHFO-LC) and compare its physical properties with those OHFO commercially available (Shaker and Flutter). The OHFO-LC was developed from polyvinyl chloride material and one stainless steel sphere. Pressures and frequencies were measured at flows of 4, 6, 8, 10 and 15L/min. Pressures at the mouthpieces were measured by a transducer connected to a microcomputer. The oscillation frequencies were obtained from the graph of the pressure. The frequencies and pressures were compared among groups using one-way Anova and Tukey’s post hoc tests, p≤0.05. There were no differences among the frequencies of the three devices in all tested flows. The OHFO-LC device showed a higher positive expiratory pressure compared with the Shaker at all tested flows (4 L/min: 4.7±1.2 vs. 1.0±0.2 cmH2O; 6 L/min: 8.6±1.5 vs. 3.5±0.5 cmH2O; 8 L/min: 10.8±1.6 vs. 5.4±0.2 cmH2O; 10 L/min: 13.5±1.2 vs. 7.7±0.4 cmH2O; 15 L/min: 14.3±1.1 vs. 7.8±0.2 cmH2O; OHFO-LC vs. Shaker; p≤0.05) and at 10 and 15 L/min compared with Flutter (10 L/min: 13.5±1.2 vs. 7.5±1.2 cmH2O; 15 L/min: 14.3±1.1 vs. 8.2±1.2 cmH2O; OHFO-LC vs. Flutter, p≤0.05). The cost of the OHFO-LC device was much lower than both the Shaker and the Flutter. Our results showed that the OHFO-LC had physical properties with similar frequencies but higher pressures than other OHFO devices that are commercially available. Future studies are necessary to evaluate its clinical efficacy

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Multi-Country Multi-City (MCC) Collaborative Research Network: Barrak Alahmad, Rosana Abrutzky, Paulo Hilario Nascimento Saldiva, Patricia Matus Correa, Nicolás Valdés Orteg, Haidong Kan, Samuel Osorio, Ene Indermitte, Jouni J K Jaakkola, Niilo Ryti, Alexandra Schneider, Veronika Huber, Klea Katsouyanni, Antonis Analitis, Alireza Entezari, Fatemeh Mayvaneh, Paola Michelozzi, Francesca de'Donato, Masahiro Hashizume, Yoonhee Kim, Magali Hurtado Diaz, César De la Cruz Valencia, Ala Overcenco, Danny Houthuijs, Caroline Ameling, Shilpa Rao, Xerxes Seposo, Baltazar Nunes, Iulian-Horia Holobaca, Ho Kim, Whanhee Lee, Carmen Íñiguez, Bertil Forsberg, Christofer Åström, Martina S Ragettli, Yue-Liang Leon Guo, Bing-Yu Chen, Valentina Colistro, Antonella Zanobetti, Joel Schwartz, Tran Ngoc Dang, Do Van DungErratum in: Author Correction: Sci Rep. 2022 May 13;12(1):7960. doi: 10.1038/s41598-022-11769-6. https://www.nature.com/articles/s41598-022-11769-6Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.The study was primarily supported by Grants from the European Commission’s Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 101032087.info:eu-repo/semantics/publishedVersio

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries

    Get PDF
    Background: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1–2.3) and 9.1 (95% eCI, 8.9–9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4–2.8) and 12.8 (95% eCI, 12.2–13.1) for every 1000 heart failure deaths, respectively. Conclusions: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day—and especially under a changing climate.Clinical Perspective_ What Is New?: This study provided evidence from what we believe is the largest multinational dataset ever assembled on cardiovascular outcomes and environmental exposures; Extreme hot and cold temperatures were associated with increased risk of death from any cardiovascular cause, ischemic heart disease, stroke, and heart failure; For every 1000 cardiovascular deaths, 2 and 9 excess deaths were attributed to extreme hot and cold days, respectively. _ What Are the Clinical Implications?: Extreme temperatures from a warming planet may become emerging priorities for public health and preventative cardiology; The findings of this study should prompt professional cardiology societies to commission scientific statements on the intersections of extreme temperature exposure and cardiovascular health.This study was supported by the Kuwait Foundation for the Advancement of Science (CB21-63BO-01); the US Environmental Protection Agency (RD-835872); Harvard Chan National Institute of Environmental Health Sciences Center for Environmental Health (P01ES009825); the UK Medical Research Council (MR/R013349/1); the UK Natural Environment Research Council (NE/R009384/1); the European Union’s Horizon 2020 Project Exhaustion (820655); the Australian National Health and Medical Research Council (APP 2000581, APP 1109193, APP 1163693); the National Institute of Environmental Health Sciences–funded HERCULES Center (P30ES019776); the MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S); the Taiwanese Ministry of Science and Technology (MOST 109–2621-M-002–021); the Environmental Restoration and Conservation Agency, Environment Research and Technology Development Fund (JPMEERF15S11412); the São Paulo Research Foundation; and Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016)info:eu-repo/semantics/publishedVersio

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    © 2022, The Author(s).Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.N

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries.

    Get PDF
    BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate
    corecore