55 research outputs found

    Merging history as a function of halo environment

    Full text link
    According to the hierarchical scenario, galaxies form via merging and accretion of small objects. Using N-body simulations, we study the frequency of merging events in the history of the halos. We find that at z<~2 the merging rate of the overall halo population can be described by a simple power law (1+z)^3. The main emphasis of the paper is on the effects of environment of halos at the present epoch (z=0). We find that the halos located inside clusters have formed earlier (dz \approx 1) than isolated halos of the same mass. At low redshifts (z<1), the merger rate of cluster halos is 3 times lower than that of isolated halos and 2 times lower than merger rate of halos that end up in groups by z=0. At higher redshifts (z~1-4), progenitors of cluster and group halos have 3--5 times higher merger rates than isolated halos. We briefly discuss implications of our results for galaxy evolution in different environments.Comment: submitted to the Astrophys. Journal; 11 pages, 9 figs., LaTeX (uses emulateapj.sty

    Galaxies in N-body simulations: overcoming the overmerging problem

    Get PDF
    We present analysis of the evolution of dark matter halos in dense environments of groups and clusters in dissipationless cosmological simulations. The premature destruction of halos in such environments, known as the overmerging, reduces the predictive power of N-body simulations and makes difficult any comparison between models and observations. We analyze the possible processes that cause the overmerging and assess the extent to which this problem can be cured with current computer resources and codes. Using both analytic estimates and high resolution numerical simulations, we argue that the overmerging is mainly due to the lack of numerical resolution. We find that the force and mass resolution required for a simulated halo to survive in galaxy groups and clusters is extremely high and was almost never reached before: ~1-3 kpc and 10^8-10^9 Msun, respectively. We use the high-resolution Adaptive Refinement Tree (ART) N-body code to run cosmological simulations with the particle mass of \approx 2x10^8/h Msun} and the spatial resolution of \approx 1-2/h kpc, and show that in these simulations the halos do survive in regions that would appear overmerged with lower force resolution. Nevertheless, the halo identification in very dense environments remains a challenge even with the resolution this high. We present two new halo finding algorithms developed to identify both isolated and satellite halos that are stable (existed at previous moments) and gravitationally bound. To illustrate the use of the satellite halos that survive the overmerging, we present a series of halo statistics, that can be compared with those of observed galaxies. (Abridged)Comment: Accepted for publication in ApJ, substantional revisions after the first version, LaTeX 23 pages, 18 figs. (uses emulateapj.sty), Full-resolution version of Fig.9 is available upon reques

    R2R^2 corrections to the cosmological dynamics of inflation in the Palatini formulation

    Full text link
    We investigate the corrections to the inflationary cosmological dynamics due to a R2R^2 term in the Palatini formulation which may arise as quantum corrections to the effective Lagrangian in early universe. We found that the standard Friedmann equation will not be changed when the scalar field is in the potential energy dominated era. However, in the kinetic energy dominated era, the standard Friedmann equation will be modified and in the case of closed and flat universe, the Modified Friedmann equation will automatically require that the initial kinetic energy density of the scalar field must be in sub-Planckian scale.Comment: 11 pages, no figures. Accepted by Class.Quant.Grav.v2:References adde

    Probability for Primordial Black Holes Pair in 1/R Gravity

    Full text link
    The probability for quantum creation of an inflationary universe with a pair of black holes in 1/R - gravitational theory has been studied. Considering a gravitational action which includes a cosmological constant (Λ\Lambda) in addition to δR1 \delta R^{- 1} term, the probability has been evaluated in a semiclassical approximation with Hartle-Hawking boundary condition. We obtain instanton solutions determined by the parameters δ\delta and Λ\Lambda satisfying the constraint δ4Λ23 \delta \leq \frac{4 \Lambda^{2}}{3}. However, we note that two different classes of instanton solutions exists in the region 0<δ<4Λ230 < \delta < \frac{4 \Lambda^{2}}{3}. The probabilities of creation of such configurations are evaluated. It is found that the probability of creation of a universe with a pair of black holes is strongly suppressed with a positive cosmological constant except in one case when 0<δ<Λ20 < \delta < \Lambda^{2}. It is also found that gravitational instanton solution is permitted even with Λ=0\Lambda = 0 but one has to consider δ<0\delta < 0. However, in the later case a universe with a pair of black holes is less probable.Comment: 15 pages, no figure. submitted to Phys. Rev.

    Palatini formulation of the R1R^{-1}modified gravity with an additionally squared scalar curvature term

    Full text link
    In this paper by deriving the Modified Friedmann equation in the Palatini formulation of R2R^2 gravity, first we discuss the problem of whether in Palatini formulation an additional R2R^2 term in Einstein's General Relativity action can drive an inflation. We show that the Palatini formulation of R2R^2 gravity cannot lead to the gravity-driven inflation as in the metric formalism. If considering no zero radiation and matter energy densities, we obtain that only under rather restrictive assumption about the radiation and matter energy densities there will be a mild power-law inflation a(t)t2a(t)\sim t^2, which is obviously different from the original vacuum energy-like driven inflation. Then we demonstrate that in the Palatini formulation of a more generally modified gravity, i.e., the 1/R+R21/R+R^2 model that intends to explain both the current cosmic acceleration and early time inflation, accelerating cosmic expansion achieved at late Universe evolution times under the model parameters satisfying αβ\alpha\ll\beta.Comment: 14 pages, accepted for publication by CQ

    Nuclear activity in galaxy pairs: a spectroscopic analysis of 48 UZC-BGPs

    Full text link
    Galaxy pairs are ideal sites in which to investigate the role of interaction on nuclear activity. For this reason we have undertaken a spectroscopic survey of a large homogeneous sample of galaxy pairs (UZC-BGP) and we present the results of the nuclear spectral classification of 48 pairs (more than half of the whole sample). The fraction of emission line galaxies is extremely large, especially among spirals (84 % and 95 %, for early and late spirals respectively). SB is the most frequent type of nuclear activity encountered (30 % of galaxies) while AGNs are only 19%. The fractions raise to 45 % and 22 % when considering only spirals. Late spirals are characterized by both an unusual increase (35 %) of AGN activity and high luminosity (44 % have M_B <-20.0 + 5log h). LLAGNs are only 8% of the total number of galaxies, but this activity could be present in another 10 % of the galaxies (LLAGN candidates). Absorption line galaxies reside mostly (61 %) in S0 galaxies and display the lowest B luminosity in the sample, only 18 % of them have M_B < -20 + 5 log h, but together with LLAGNs they are the most massive galaxies in the sample. Intense-SB nuclei are found in galaxy pairs with galaxy-galaxy projected separations up to 160 h^{-1} kpc suggesting that in bright isolated galaxy pairs interaction may be at work and effective up to that distance. AGNs are characterized by an advanced morphology while SB phenomenon occurs with the same frequency in early and late spirals. LLAGNs and LLAGN candidates do not always show similar properties, a finding which might confirm the heterogeneous nature of this class of objects. Half LLAGNs are hosted in galaxies showing visible signs of interaction with fainter companions, suggesting that minor interactions might be a driving mechanism for a relevant fraction of LLAGNs.Comment: 19 pages, 11 figures, accepted by A&

    Density profiles of dark matter haloes: diversity and dependence on environment

    Get PDF
    (Abridged) We study the outer density profiles of dark matter haloes predicted by a generalized secondary infall model and observed in a N-body cosmological simulation of a \Lambda CDM model. We find substantial systematic variations in shapes and concentrations of the halo profiles as well as a strong correlation of the profiles with the environment. In the N-body simulation, the average outer slope of the density profiles, \beta (\rho\propto r^{-\beta}), of isolated haloes is \approx 2.9; 68% of these haloes have values of \beta between 2.5 and 3.8. Haloes in dense environments of clusters are more concentrated and exhibit a broad distribution of \beta with values larger than for isolated haloes . Contrary to what one may expect, the haloes contained within groups and galaxy systems are less concentrated and have flatter outer density profiles than the isolated haloes. The concentration decreases with M_h, but its scatter for a given mass is substantial. The mass and circular velocity of the haloes are strongly correlated: M_h \propto V_m^{\alpha} with \alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the rms deviations from these relations are \Delta logM_h=0.12 and 0.18, respectively. Approximately 30% of the haloes are contained within larger haloes or have massive companions (larger than ~0.3 the mass of the current halo) within 3 virial radii. The remaining 70% of the haloes are isolated objects. The distribution of \beta as well as the concentration-mass and M_h-V_m relations for the isolated haloes agree very well with the predictions of our seminumerical approach which is based on a generalization of the secondary infall model and on the extended Press-Schechter formalism.Comment: 14 pages, 11 figures included, uses mn.sty, accepted by MNRAS. Minor modifications, new and updated reference

    Chaotic Friedmann-Robertson-Walker Cosmology

    Get PDF
    We show that the dynamics of a spatially closed Friedmann - Robertson - Walker Universe conformally coupled to a real, free, massive scalar field, is chaotic, for large enough field amplitudes. We do so by proving that this system is integrable under the adiabatic approximation, but that the corresponding KAM tori break up when non adiabatic terms are considered. This finding is confirmed by numerical evaluation of the Lyapunov exponents associated with the system, among other criteria. Chaos sets strong limitations to our ability to predict the value of the field at the Big Crunch, from its given value at the Big Bang. (Figures available on request)Comment: 28 pages, 11 figure

    A Unified Approach to Variational Derivatives of Modified Gravitational Actions

    Full text link
    Our main aim in this paper is to promote the coframe variational method as a unified approach to derive field equations for any given gravitational action containing the algebraic functions of the scalars constructed from the Riemann curvature tensor and its contractions. We are able to derive a master equation which expresses the variational derivatives of the generalized gravitational actions in terms of the variational derivatives of its constituent curvature scalars. Using the Lagrange multiplier method relative to an orthonormal coframe, we investigate the variational procedures for modified gravitational Lagrangian densities in spacetime dimensions n3n\geqslant 3. We study well-known gravitational actions such as those involving the Gauss-Bonnet and Ricci-squared, Kretchmann scalar, Weyl-squared terms and their algebraic generalizations similar to generic f(R)f(R) theories and the algebraic generalization of sixth order gravitational Lagrangians. We put forth a new model involving the gravitational Chern-Simons term and also give three dimensional New massive gravity equations in a new form in terms of the Cotton 2-form
    corecore