82 research outputs found

    SOX2 Is a Univocal Marker for Human Oral Mucosa Epithelium Useful in Post-COMET Patient Characterization

    Get PDF
    Total bilateral Limbal Stem Cells Deficiency is a pathologic condition of the ocular surface due to loss or impairment of corneal stem cell function, altering homeostasis of the corneal epithelium. Cultivated Oral Mucosa Epithelial Transplantation (COMET) is the only autologous treatment for this pathology. During the follow-up, a proper characterization of the transplanted oral mucosa on the ocular surface supports understanding the regenerative process. The previously proposed markers for oral mucosa identification (e.g., keratins 3 and 13) are co-expressed by corneal and conjunctival epithelia. Here, we propose a new specific marker to distinguish human oral mucosa from the epithelia of the ocular surface. We compared the transcriptome of holoclones (stem cells) from the human oral mucosa, limbal and conjunctival cultures by microarray assay. High expression of SOX2 identified the oral mucosa vs. cornea and conjunctiva, while PAX6 was highly expressed in corneal and conjunctival epithelia. The transcripts were validated by qPCR, and immunological methods identified the related proteins. Finally, the proposed markers were used to analyze a 10-year follow-up aniridic patient treated by COMET. These findings will support the follow-up analysis of COMET treated patients and help to shed light on the mechanism of corneal repair and regeneration

    Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up

    Get PDF
    Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas

    The isopeptidase inhibitor 2cPE triggers proteotoxic stress and ATM activation in chronic lymphocytic leukemia cells

    Get PDF
    Relapse after treatment is a common and unresolved problem for patients suffering of the B-cell chronic lymphocytic leukemia (B-CLL). Here we investigated the ability of the isopeptidase inhibitor 2cPE to trigger apoptosis in leukemia cells in comparison with bortezomib, another inhibitor of the ubiquitin-proteasome system (UPS). Both inhibitors trigger apoptosis in CLL B cells and gene expression profiles studies denoted how a substantial part of genes up-regulated by these compounds are elements of adaptive responses, aimed to sustain cell survival. 2cPE treatment elicits the up-regulation of chaperones, proteasomal subunits and elements of the anti-oxidant response. Selective inhibition of these responses augments apoptosis in response to 2cPE treatment. We have also observed that the product of the ataxia telangiectasia mutated gene (ATM) is activated in 2cPE treated cells. Stimulation of ATM signaling is possibly dependent on the alteration of the redox homeostasis. Importantly ATM inhibition, mutations or down-modulation increase cell death in response to 2cPE. Overall this work suggests that 2cPE could offer new opportunities for the treatment of B-CLL

    Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants

    Get PDF
    Somatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis

    A data-driven network model of primary myelofibrosis: transcriptional and post-transcriptional alterations in CD34+ cells

    Get PDF
    microRNAs (miRNAs) are relevant in the pathogenesis of primary myelofibrosis (PMF) but our understanding is limited to specific target genes and the overall systemic scenario islacking. By both knowledge-based and ab initio approaches for comparative analysis of CD34+ cells of PMF patients and healthy controls, we identified the deregulated pathways involving miRNAs and genes and new transcriptional and post-transcriptional regulatory circuits in PMF cells. These converge in a unique and integrated cellular process, in which the role of specific miRNAs is to wire, co-regulate and allow a fine crosstalk between the involved processes. The PMF pathway includes Akt signaling, linked to Rho GTPases, CDC42, PLD2, PTEN crosstalk with the hypoxia response and Calcium-linked cellular processes connected to cyclic AMP signaling. Nested on the depicted transcriptional scenario, predicted circuits are reported, opening new hypotheses. Links between miRNAs (miR-106a-5p, miR-20b-5p, miR-20a-5p, miR-17-5p, miR-19b-3p and let-7d-5p) and key transcription factors (MYCN, ATF, CEBPA, REL, IRF and FOXJ2) and their common target genes tantalizingly suggest new path to approach the disease. The study provides a global overview of transcriptional and post-transcriptional deregulations in PMF, and, unifying consolidated and predicted data, could be helpful to identify new combinatorial therapeutic strategy. Interactive PMF network model: http://compgen.bio.unipd.it/pmf-net/
    • …