192 research outputs found

    Disclosure Processing Costs and Investors’ Information Choice: A Literature Review

    No full text

    WASP-10b: a 3MJ, gas-giant planet transiting a late-type K star

    Get PDF
    We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the Wide Angle Search for Planets (WASP) Consortium and confirmed using Nordic Optical Telescope FIbre-fed Echelle Spectrograph and SOPHIE radial velocity data. A 3.09-d period, 29 mmag transit depth and 2.36 h duration are derived for WASP-10b using WASP and high-precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov Chain Monte Carlo procedure leads to a planet radius of 1.28RJ, a mass of 2.96MJ and eccentricity of ≈0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than ≈2MJ and non-zero eccentricities. WASP-10's host star, GSC 2752−00114 (USNO-B1.0 1214−0586164) is among the fainter stars in the WASP sample, with V= 12.7 and a spectral type of K5. This result shows promise for future late-type dwarf star survey

    A fast hybrid algorithm for exoplanetary transit searches

    Get PDF
    We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V= 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-u

    WASP-14b: 7.3 MJ transiting planet in an eccentric orbit

    Get PDF
    We report the discovery of a 7.3 MJ exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118−0262485 with a period of 2.243 752 d and orbital eccentricity e= 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 ± 0.5 MJ and a radius of 1.28 ± 0.08 RJ. This leads to a mean density of about 4.6 g cm−3 making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of 160 ± 20 pc. Spectral analysis of the host star reveals a temperature of 6475 ± 100 K, log g= 4.07 cm s−2 and v sin i= 4.9 ± 1.0 km s−1, and also a high lithium abundance, log N(Li) = 2.84 ± 0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gy

    WASP-3b: a strongly irradiated transiting gas-giant planet

    Get PDF
    We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every 1.846 834 ± 0.000 002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have Teff= 6400 ± 100 K and log g= 4.25 ± 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76+0.08−0.14MJ and radius 1.31+0.07−0.14RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric model

    Efficient identification of exoplanetary transit candidates from SuperWASP light curves

    Get PDF
    Transiting extrasolar planets constitute only a small fraction of the range of stellar systems found to display periodic, shallow dimmings in wide-field surveys employing small-aperture camera arrays. Here we present an efficient selection strategy for follow-up observations, derived from analysis of the light curves of a sample of 67 SuperWASP targets that passed the selection tests we used in earlier papers, but which have subsequently been identified either as planet hosts or as astrophysical false positives. We determine the system parameters using Markov-chain Monte Carlo analysis of the SuperWASP light curves. We use a constrained optimization of χ2 combined with a Bayesian prior based on the main-sequence mass and radius expected from the Two Micron All Sky Survey J−H colour. The Bayesian nature of the analysis allows us to quantify both the departure of the host star from the main-sequence mass-radius relation and the probability that the companion radius is less than 1.5 Jupiter radii. When augmented by direct light-curve analyses that detect binaries with unequal primary and secondary eclipses, and objects with aperture blends that are resolved by SuperWASP, we find that only 13 of the original 67 stars, including the three known planets in the sample, would qualify for follow-up. This suggests that planet discovery ‘hit rates' better than one-in-five should be achievable. In addition, the stellar binaries that qualify are likely to have astrophysically interesting stellar or substellar secondarie

    The Next Generation Transit Survey—Prototyping Phase

    Get PDF
    We present the prototype telescope for the Next Generation Transit Survey, which was built in the UK in 2008/2009 and tested on La Palma in the Canary Islands in 2010. The goals for the prototype system were severalfold: to determine the level of systematic noise in an NGTS-like system; demonstrate that we can perform photometry at the (sub) millimagnitude level on transit timescales across a wide-field; show that it is possible to detect transiting super-Earth and Neptune-sized exoplanets and prove the technical feasibility of the proposed planet survey. We tested the system for around 100 nights and met each of the goals above. Several key areas for improvement were highlighted during the prototyping phase. They have been subsequently addressed in the final NGTS facility, which was recently commissioned at ESO Cerro Paranal, Chile