121 research outputs found

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Learning to Reconstruct People in Clothing from a Single RGB Camera

    No full text
    We present a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving, in less than 10 seconds with a reconstruction accuracy of 5mm. Our model learns to predict the parameters of a statistical body model and instance displacements that add clothing and hair to the shape. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into pose-invariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, the model can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 6mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach

    In the Wild Human Pose Estimation Using Explicit 2D Features and Intermediate 3D Representations

    No full text
    Convolutional Neural Network based approaches for monocular 3D human pose estimation usually require a large amount of training images with 3D pose annotations. While it is feasible to provide 2D joint annotations for large corpora of in-the-wild images with humans, providing accurate 3D annotations to such in-the-wild corpora is hardly feasible in practice. Most existing 3D labelled data sets are either synthetically created or feature in-studio images. 3D pose estimation algorithms trained on such data often have limited ability to generalize to real world scene diversity. We therefore propose a new deep learning based method for monocular 3D human pose estimation that shows high accuracy and generalizes better to in-the-wild scenes. It has a network architecture that comprises a new disentangled hidden space encoding of explicit 2D and 3D features, and uses supervision by a new learned projection model from predicted 3D pose. Our algorithm can be jointly trained on image data with 3D labels and image data with only 2D labels. It achieves state-of-the-art accuracy on challenging in-the-wild data

    Visually Plausible Human-Object Interaction Capture from Wearable Sensors

    Get PDF
    In everyday lives, humans naturally modify the surrounding environmentthrough interactions, e.g., moving a chair to sit on it. To reproduce suchinteractions in virtual spaces (e.g., metaverse), we need to be able to captureand model them, including changes in the scene geometry, ideally fromego-centric input alone (head camera and body-worn inertial sensors). This isan extremely hard problem, especially since the object/scene might not bevisible from the head camera (e.g., a human not looking at a chair whilesitting down, or not looking at the door handle while opening a door). In thispaper, we present HOPS, the first method to capture interactions such asdragging objects and opening doors from ego-centric data alone. Central to ourmethod is reasoning about human-object interactions, allowing to track objectseven when they are not visible from the head camera. HOPS localizes andregisters both the human and the dynamic object in a pre-scanned static scene.HOPS is an important first step towards advanced AR/VR applications based onimmersive virtual universes, and can provide human-centric training data toteach machines to interact with their surroundings. The supplementary video,data, and code will be available on our project page athttp://virtualhumans.mpi-inf.mpg.de/hops/<br

    Multi-Garment Net: {L}earning to Dress {3D} People from Images

    No full text
    We present Multi-Garment Network (MGN), a method to predict body shape and clothing, layered on top of the SMPL model from a few frames (1-8) of a video. Several experiments demonstrate that this representation allows higher level of control when compared to single mesh or voxel representations of shape. Our model allows to predict garment geometry, relate it to the body shape, and transfer it to new body shapes and poses. To train MGN, we leverage a digital wardrobe containing 712 digital garments in correspondence, obtained with a novel method to register a set of clothing templates to a dataset of real 3D scans of people in different clothing and poses. Garments from the digital wardrobe, or predicted by MGN, can be used to dress any body shape in arbitrary poses. We will make publicly available the digital wardrobe, the MGN model, and code to dress SMPL with the garments

    Neural-{GIF}: {N}eural Generalized Implicit Functions for Animating People in Clothing

    Get PDF

    Learning to Dress {3D} People in Generative Clothing

    Get PDF
    Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shapes. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term in SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses. The model, code and data are available for research purposes at https://cape.is.tue.mpg.de.Comment: CVPR-2020 camera ready. Code and data are available at https://cape.is.tue.mpg.d

    {LoopReg}: {S}elf-supervised Learning of Implicit Surface Correspondences, Pose and Shape for {3D} Human Mesh Registration

    Get PDF
    We address the problem of fitting 3D human models to 3D scans of dressed humans. Classical methods optimize both the data-to-model correspondences and the human model parameters (pose and shape), but are reliable only when initialized close to the solution. Some methods initialize the optimization based on fully supervised correspondence predictors, which is not differentiable end-to-end, and can only process a single scan at a time. Our main contribution is LoopReg, an end-to-end learning framework to register a corpus of scans to a common 3D human model. The key idea is to create a self-supervised loop. A backward map, parameterized by a Neural Network, predicts the correspondence from every scan point to the surface of the human model. A forward map, parameterized by a human model, transforms the corresponding points back to the scan based on the model parameters (pose and shape), thus closing the loop. Formulating this closed loop is not straightforward because it is not trivial to force the output of the NN to be on the surface of the human model - outside this surface the human model is not even defined. To this end, we propose two key innovations. First, we define the canonical surface implicitly as the zero level set of a distance field in R3, which in contrast to morecommon UV parameterizations, does not require cutting the surface, does not have discontinuities, and does not induce distortion. Second, we diffuse the human model to the 3D domain R3. This allows to map the NN predictions forward,even when they slightly deviate from the zero level set. Results demonstrate that we can train LoopRegmainly self-supervised - following a supervised warm-start, the model becomes increasingly more accurate as additional unlabelled raw scans are processed. Our code and pre-trained models can be downloaded for research

    {TOCH}: {S}patio-Temporal Object Correspondence to Hand for Motion Refinement

    Get PDF
    We present TOCH, a method for refining incorrect 3D hand-object interaction sequences using a data prior. Existing hand trackers, especially those that rely on very few cameras, often produce visually unrealistic results with hand-object intersection or missing contacts. Although correcting such errors requires reasoning about temporal aspects of interaction, most previous work focus on static grasps and contacts. The core of our method are TOCH fields, a novel spatio-temporal representation for modeling correspondences between hands and objects during interaction. The key component is a point-wise object-centric representation which encodes the hand position relative to the object. Leveraging this novel representation, we learn a latent manifold of plausible TOCH fields with a temporal denoising auto-encoder. Experiments demonstrate that TOCH outperforms state-of-the-art (SOTA) 3D hand-object interaction models, which are limited to static grasps and contacts. More importantly, our method produces smooth interactions even before and after contact. Using a single trained TOCH model, we quantitatively and qualitatively demonstrate its usefulness for 1) correcting erroneous reconstruction results from off-the-shelf RGB/RGB-D hand-object reconstruction methods, 2) de-noising, and 3) grasp transfer across objects. We will release our code and trained model on our project page at http://virtualhumans.mpi-inf.mpg.de/toch

    Stereo Radiance Fields {(SRF)}: {L}earning View Synthesis from Sparse Views of Novel Scenes

    Get PDF
    • …
    corecore