33 research outputs found

    Brain potential responses involved in decision-making in weightlessness

    No full text
    The brain is essential to human adaptation to any environment including space. We examined astronauts’ brain function through their electrical EEG brain potential responses related to their decision of executing a docking task in the same virtual scenario in Weightlessness and on Earth before and after the space stay of 6 months duration. Astronauts exhibited a P300 component in which amplitude decreased during, and recovered after, their microgravity stay. This effect is discussed as a post-value-based decision-making closing mechanism; The P300 amplitude decrease in weightlessness is suggested as an emotional stimuli valence reweighting during which orbitofrontal BA10 would play a major role. Additionally, when differentiating the bad and the good docks on Earth and in Weightlessness and keeping in mind that astronauts were instantaneously informed through a visual cue of their good or bad performance, it was observed that the good dockings resulted in earlier voltage redistribution over the scalp (in the 150–250 ms period after the docking) than the bad dockings (in the 250–400 ms) in Weightlessness. These results suggest that in Weightlessness the knowledge of positive or negative valence events is processed differently than on Earth.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    EEG-based brain-computer interface for alpha speed control of a small robot using the MUSE headband

    No full text
    Non-invasive BMI applications are increasingly used in different contexts ranging from industrial, clinical and gaming. After having tested the difference between a classical EEG recorder with electroconductive gel (ANT system) and the MUSE EEG headband, we studied the BCI performances of the later during the control of a small robot. We demonstrated that the participants were able to successfully control the robot using an online brain-computer interface based on the signal power in different frequency bands (delta, theta and alpha) characterizing the eyes-opened and relaxed eyes-closed states. Additionally, we performed a correlation analysis which demonstrated that the BCI commands were more related to a delta or theta power decrease for the determination of the classifier output probability and to the alpha power increase for the speed control of the robot.info:eu-repo/semantics/publishe

    Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness.

    No full text
    Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (∼ERD: event related desynchronization) of the ∼10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Performance of the Emotiv Epoc headset for P300-based applications

    Get PDF
    Background: For two decades, EEG-based Brain-Computer Interface (BCI) systems have been widely studied in research labs. Now, researchers want to consider out-of-the-lab applications and make this technology available to everybody. However, medical-grade EEG recording devices are still much too expensive for end-users, especially disabled people. Therefore, several low-cost alternatives have appeared on the market. The Emotiv Epoc headset is one of them. Although some previous work showed this device could suit the customer's needs in terms of performance, no quantitative classification-based assessments compared to a medical system are available.Methods: This paper aims at statistically comparing a medical-grade system, the ANT device, and the Emotiv Epoc headset by determining their respective performances in a P300 BCI using the same electrodes. On top of that, a review of previous Emotiv studies and a discussion on practical considerations regarding both systems are proposed. Nine healthy subjects participated in this experiment during which the ANT and the Emotiv systems are used in two different conditions: sitting on a chair and walking on a treadmill at constant speed.Results: The Emotiv headset performs significantly worse than the medical device; observed effect sizes vary from medium to large. The Emotiv headset has higher relative operational and maintenance costs than its medical-grade competitor.Conclusions: Although this low-cost headset is able to record EEG data in a satisfying manner, it should only be chosen for non critical applications such as games, communication systems, etc. For rehabilitation or prosthesis control, this lack of reliability may lead to serious consequences. For research purposes, the medical system should be chosen except if a lot of trials are available or when the Signal-to-Noise Ratio is high. This also suggests that the design of a specific low-cost EEG recording system for critical applications and research is still required. © 2013 Duvinage et al. licensee BioMed Central Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Neural rhythmic symphony of human walking observation: Upside-down and uncoordinated condition on cortical theta, Alpha, Beta and gamma oscillations

    Get PDF
    Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR). We analyzed event related potentials (ERP), the event related spectral perturbation (ERSP) and the inter-trial coherence (ITC) from high-density EEG recording during video display onset (-200-600 ms) and the steady state visual evoked potentials (SSVEP) inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images); and Uncoordinated (pseudo-randomly mixed images). We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Long-lasting cortical reorganization as the result of motor imagery of throwing a ball in a virtual tennis court

    Get PDF
    In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore