5 research outputs found

    Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs

    Get PDF
    Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs’ finishing weight required further elucidation

    Isolation and Characterization of an L-Amino Acid Oxidase-Producing Marine Bacterium

    No full text

    Effects of Genetic Variation of the Sorting Nexin 29 (<i>SNX29</i>) Gene on Growth Traits of Xiangdong Black Goat

    No full text
    Previous studies have found that the copy number variation (CNV) and insertion/deletion (indels) located in the sorting nexin 29 (SNX29) gene, which is an important candidate gene related to meat production and quality, are associated with growth traits of African goats and Shaanbei white cashmere goats. However, the genetic effects of SNX29 genetic variation on growth traits of Xiangdong black (XDB) goat (a representative meat goat breed in China) are still unclear. The purpose of this study was to detect the mRNA expression level of SNX29 and to explore the genetic effects of CNV and indel within SNX29 on growth traits and gene expression in XDB goat. The SNX29 mRNA expression profile showed that the SNX29 was highly expressed in adipose tissues, indicating that the SNX29 gene could play a key role in subcutaneous adipose deposition of XDB goat. 17 bp indel (g.10559298-10559314), 21 bp indel (g.10918982-10919002) and CNV were detected in 516 individuals of XDB goat by PCR or qPCR. The association analysis of SNX29 CNV with growth traits in XDB goats showed that SNX29 CNV was significantly correlated with chest circumference and abdominal circumference (p SNX29 CNV goat individuals were more advantageous. For the mRNA expression of SNX29 gene, individuals with SNX29 copy number normal type had a higher trend than that of SNX29 gene with copy number gain type in longissimus dorsi muscle (p = 0.07), whereas individuals with SNX29 copy number gain type had a higher trend in abdominal adipose (p = 0.09). Overall, these results suggested that the SNX29 gene could play an important role in growth and development of XDB goats and could be used for marker-assisted selection (MAS) in XDB goats

    Genome-Wide Association Analysis Identifies Genomic Regions and Candidate Genes for Growth and Fatness Traits in Diannan Small-Ear (DSE) Pigs

    No full text
    In the livestock industry, the growth and fatness traits are directly related to production efficiency and economic profits. As for Diannan small-ear (DSE) pigs, a unique indigenous breed, the genetic architecture of growth and fatness traits is still elusive. The aim of this study was to search the genetic loci and candidate genes associated with phenotypic traits in DSE pigs using GWAS based on the Geneseek Porcine 50K SNP Chip data. A total of 22,146 single nucleotide polymorphisms (SNPs) were detected in 265 DSE pigs and used for Genome-wide association studies (GWAS) analysis. Seven SNPs were found to be associated with back height, chest circumference, cannon bone circumference, and backfat thickness at the suggestive significance level. Based on gene annotation results, these seven SNPs were, respectively, mapped to the following candidate genes, VIPR2, SLC10A2, NUCKS1, MCT1, CHCHD3, SMOX, and GPR1, which are mainly involved with adipocyte differentiation, lipid metabolism, skeletal muscle development, and average daily weight gain. Our work offers novel insights into the genetic architecture of economically important traits in swine and may play an important role in breeding using molecular markers in the DSE breed

    Association analysis of the sorting nexin 29 (SNX29) gene copy number variations with growth traits in Diannan small-ear (DSE) pigs

    No full text
    SNX29 is a potential functional gene associated with meat production traits. Previous studies have shown that SNX29 copy number variation (CNV) could be implicated with phenotype in goats. However, in Diannan small-ear (DSE) pigs, the genetic impact of SNX29 CNV on growth traits remains unclear. Therefore, this study investigated the associations between SNX29 CNVs (CNV10810 and CNV10811) and growth traits in 415 DSE pigs. The results revealed that the CNV10810 mutation was significantly associated with backfat thickness in DSE pigs at 12 and 15 months old (P P P SNX29 CNV plays a role in regulating growth and development in pigs, thus suggesting its potential application for pig breeding programmes.</p