7 research outputs found

    Incorporation of resistance to angular leaf spot and bean common mosaic necrosis virus diseases into adapted common bean (Phaseolus vulgaris L.) genotype in Tanzania

    Get PDF
    Angular leaf spot (ALS) caused by the fungus Pseudocercospora griseola and Bean common mosaic and necrosis virus (BCMV/BCMNV) are important diseases of common bean in Tanzania that can cause severe yield reduction when uncontrolled. This study was conducted to incorporate resistant genes for ALS and BCMV/BCMNV diseases into adapted, market class and farmers and consumers preferred bean genotype using marker assisted selection. The parents Mexico 54 and UBR(25)95 donor of Phg-2 and I/bc-3 genes for ALS and BCMV/BCMNV, respectively were used for the recipient being Kablanketi. In selection, SCAR markers SNO2, ROC11 and SW13 linked to Phg-2, bc-3 and I gene, respectively were used. A parallel backcrossing (modified double cross) procedure was used. The F1, F2 and backcrosses from single crosses were characterized. The Chi square values for ALS were 0.081 (P<0.776) and 0.017 (P<0.896) and for BCMNV were 1.609 (P<0.205) and 1.2 (P<0.273) for molecular and phenotypic screening, respectively. The resistance to ALS and BCMNV was found to be monogenic and the genes involved are dominant and recessive, respectively. The heritability of ALS was found to be high (0.772) implying that selection for ALS can be done early in segregating populations. High correlation values, r = 0.741 and 0.624 for ALS and BCMNV, were obtained between phenotypic and molecular data, indicating high reliability for markers. In selection, it was possible to select lines with multiple disease resistances. This work signified the use of MAS for multiple gene screening.Keywords: Common bean, Pseudocercospora griseola, marker assisted selection, genotype, inheritanceAfrican Journal of Biotechnology Vol. 12(27), pp. 4343-435

    Maize production systems, farmers’ perception and current status of maize lethal necrosis in selected counties in Kenya

    No full text
    Maize Lethal Necrosis (MLN) is a disease of maize reported in Kenya in 2012 that results in yield losses of up to 100%. The epidemiology of MLN is complex as the disease is caused by the synergistic interaction of 2 viruses (Maize chlorotic mottle virus (MCMV) and a potyvirus). In addition, multiple reservoirs and transmission pathways exist for the spread of MLN. The current study was conducted to understand farmers’ maize production practices, their understanding of MLN, and the status of MLN in Kenya. Therefore, a survey of 406 randomly selected farmers was conducted in Bomet, Narok, Kirinyaga, Embu, and Nakuru. To confirm the presence of MLN, maize leaf samples were collected from 18 fields and tested for MCMV and SCMV by molecular techniques. MLN Symptoms observed included chlorotic mottle on leaves, necrosis, and premature plant death. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity. Sequence analysis of the partial coat protein genes of randomly selected positive samples of the two viruses showed little variability within the studied isolates and those retrieved from the GenBank. The results indicated that MLN is still prevalent in Kenya with farmers’ planting susceptible varieties

    Genetic characterization of angular leaf spot resistance in selected common bean landraces from Tanzania

    Get PDF
    Angular leaf spot disease (ALS) caused by Pseudocercospora griseola is one of the most important bean diseases in Tanzania. The bean landraces Beti-10, Nanka, Nanavala and Nkanamna used in this study have been identified as resistant to ALS but the nature of inheritance and mechanisms of resistance against ALS in those potential sources has not been elucidated. This information is crucial and a necessary first step for a successful breeding programme. The objective of this work was to study the inheritance of ALS resistance in those landraces and to identify the mechanisms of genetic resistance using Simple Sequence Repeat (SSR) markers. Crosses were made between resistant bean landraces and a susceptible bean cv Kablanketi. The parents, F1, F2 and backcrosses derived plants were used for inheritance studies and for molecular marker screening using 30 SSR markers. Results indicate that, a single dominant gene control resistance against ALS in each of the four landraces; also the SSR marker Pv-ag004 was found to be polymorphic between Beti-10 and Kablanketi and linked to the disease resistance. The resistance were validated by checking the F2 population of the cross between Kablanketi Ă— Beti-10. Therefore, since marker Pv-ag004 is polymorphic and linked to ALS resistance, the Beti-10 landrace might be a potential source of ALS resistance. However, a detailed study with more markers need to be done on these landraces with a view to opening the possibilities of identifying new markers linked to ALS resistance and mapping of genes associated with resistance to ALS.Keywords: Phaseolus vulgaris, Inheritance, ALS, SSR, Pseudocercospora griseol

    Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice

    No full text
    This open access book presents simple, robust pre-field screening protocols that allow plant breeders to screen for enhanced tolerance to heat stress in rice. Two critical heat-sensitive stages in the lifecycle of the rice crop are targeted – the seedling and flowering stages – with screening based on simple phenotypic responses. The protocols are based on the use of a hydroponics system and/or pot experiments in a glasshouse in combination with a controlled growth chamber where the heat stress treatment is applied. The protocols are designed to be effective, simple, reproducible and user-friendly. The protocols will enable plant breeders to effectively reduce the number of plants from a few thousands to less than 100 candidate individual mutants or lines in a greenhouse/growth chamber, which can then be used for further testing and validation in the field conditions. The methods can also be used to classify rice genotypes according to their heat tolerance characteristics. Thus, different types of heat stress tolerance mechanisms can be identified, presenting opportunities for pyramiding different (mutant) sources of heat stress tolerance

    Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice

    Get PDF
    This open access book presents simple, robust pre-field screening protocols that allow plant breeders to screen for enhanced tolerance to heat stress in rice. Two critical heat-sensitive stages in the lifecycle of the rice crop are targeted – the seedling and flowering stages – with screening based on simple phenotypic responses. The protocols are based on the use of a hydroponics system and/or pot experiments in a glasshouse in combination with a controlled growth chamber where the heat stress treatment is applied. The protocols are designed to be effective, simple, reproducible and user-friendly. The protocols will enable plant breeders to effectively reduce the number of plants from a few thousands to less than 100 candidate individual mutants or lines in a greenhouse/growth chamber, which can then be used for further testing and validation in the field conditions. The methods can also be used to classify rice genotypes according to their heat tolerance characteristics. Thus, different types of heat stress tolerance mechanisms can be identified, presenting opportunities for pyramiding different (mutant) sources of heat stress tolerance
    corecore