115 research outputs found

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Pharmacologic Stem Cell Based Intervention as a New Approach to Osteoporosis Treatment in Rodents

    Get PDF
    Background: Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels. Methods and Findings: We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studied revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced osteoporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density. Conclusion: Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts. © 2008 Yamaza et al

    DSG3 As a Biomarker for the Ultrasensitive Detection of Cccult Lymph Node Metastasis in Oral Cancer Using Nanostructured Immunoarrays

    Get PDF
    OBJECTIVES: The diagnosis of cervical lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) patients constitutes an essential requirement for clinical staging and treatment selection. However, clinical assessment by physical examination and different imaging modalities, as well as by histological examination of routine lymph node cryosections can miss micrometastases, while false positives may lead to unnecessary elective lymph node neck resections. Here, we explored the feasibility of developing a sensitive assay system for desmoglein 3 (DSG3) as a predictive biomarker for lymph node metastasis in HNSCC. MATERIALS AND METHODS: DSG3 expression was determined in multiple general cancer- and HNSCC-tissue microarrays (TMAs), in negative and positive HNSCC metastatic cervical lymph nodes, and in a variety of HNSCC and control cell lines. A nanostructured immunoarray system was developed for the ultrasensitive detection of DSG3 in lymph node tissue lysates. RESULTS: We demonstrate that DSG3 is highly expressed in all HNSCC lesions and their metastatic cervical lymph nodes, but absent in non-invaded lymph nodes. We show that DSG3 can be rapidly detected with high sensitivity using a simple microfluidic immunoarray platform, even in human tissue sections including very few HNSCC invading cells, hence distinguishing between positive and negative lymph nodes. CONCLUSION: We provide a proof of principle supporting that ultrasensitive nanostructured assay systems for DSG3 can be exploited to detect micrometastatic HNSCC lesions in lymph nodes, which can improve the diagnosis and guide in the selection of appropriate therapeutic intervention modalities for HNSCC patients

    Alternative Splicing Promotes Tumour Aggressiveness and Drug Resistance in African American Prostate Cancer.

    Get PDF
    linical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa

    Zebrafish phenotypic screen identifies novel Notch antagonists

    Get PDF
    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27KIP1. Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent

    Novel 2-benzoyl-6-(2,3- dimethoxybenzylidene)-cyclohexenol confers selectivity toward human MLH1 defective cancer cells through synthetic lethality

    Get PDF
    DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency

    Sprouting buds of zebrafish research in Malaysia: First Malaysia Zebrafish Disease Model Workshop

    No full text
    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community

    Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer

    No full text
    This critical review evaluates progress toward viable point-of-care protein biomarker measurements for cancer detection and diagnostics. The ability to measure panels of specific, selective cancer biomarker proteins in physicians\u27 surgeries and clinics has the potential to revolutionize cancer detection, monitoring, and therapy. The dream envisions reliable, cheap, automated, technically undemanding devices that can analyze a patient\u27s serum or saliva in a clinical setting, allowing on-the-spot diagnosis. Existing commercial products for protein assays are reliable in laboratory settings, but have limitations for point-of-care applications. A number of ultrasensitive immunosensors and some arrays have been developed, many based on nanotechnology. Multilabel detection coupled with high capture molecule density in immunosensors and arrays seems to be capable of detecting a wide range of protein concentrations with sensitivity ranging into the sub pg mL(-1) level. Multilabel arrays can be designed to detect both high and ultralow abundance proteins in the same sample. However, only a few of the newer ultrasensitive methods have been evaluated with real patient samples, which is key to establishing clinical sensitivity and selectivity

    Seeing beyond the smoke: Selecting waterpipe wastewater chemicals for risk assessments

    No full text
    Background: Increasing use prevalence of waterpipe tobacco products raises concerns about environmental impacts from waterpipe waste disposal. The U.S. Food and Drug Administration (FDA) is required to assess the environmental impact of its tobacco regulatory actions per the National Environmental Policy Act. This study builds on FDA’s efforts characterizing the aquatic toxicity of waterpipe wastewater chemicals. Methods: We compiled a comprehensive list of waterpipe wastewater chemical concentrations from literature. We then selected chemicals for risk assessment by estimating persistence, bioaccumulation, and aquatic toxicity (PBT) characteristics (U.S. Environmental Protection Agency), and hazardous concentration values (concentration affecting specific proportion of species). Results: Of 38 chemicals in waterpipe wastewater with concentration data, 20 are listed as harmful or potentially harmful constituents (HPHCs) in tobacco smoke and tobacco products by FDA, and 15 are hazardous waste per U. S. Environmental Protection Agency. Among metals, six (cadmium, chromium, lead, mercury, nickel and selenium) are included in both HPHC and hazardous waste lists and were selected for future risk assessments. Among non-metals, nicotine, and 4-methylnitrosamino-1-(3-pyridyl)− 1-butanone (NNK) were shortlisted, as they are classified as persistent and toxic. Further, N-nitrosonornicotine (NNN), with a low hazardous concentration value (HC50; concentration affecting 50 % of aquatic species) for chronic aquatic toxicity, had high aquatic toxicity concern and is selected. Conclusions: The presence of multiple hazardous compounds in waterpipe wastewater highlights the importance of awareness on the proper disposal of waterpipe wastewater in residential and retail settings. Future studies can build on the hazard characterization provided in this study through fate and transport modeling, exposure characterization and risk assessments of waterpipe wastewater chemicals
    corecore