263 research outputs found

    Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX

    Get PDF
    Introduction: In the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed ‚Äúpollensomes‚ÄĚ, are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification. Methods: To do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics. Results: These analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes. Discussion: The presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles

    Prediction of rehabilitation induced motor recovery after stroke using a multi-dimensional and multi-modal approach

    Get PDF
    Background: Stroke is a debilitating disease affecting millions of people worldwide. Despite the survival rate has significantly increased over the years, many stroke survivors are left with severe impairments impacting their quality of life. Rehabilitation programs have proved to be successful in improving the recovery process. However, a reliable model of sensorimotor recovery and a clear identification of predictive markers of rehabilitation-induced recovery are still needed. This article introduces the cross-modality protocols designed to investigate the rehabilitation treatment’s effect in a group of stroke survivors. Methods/design: A total of 75 stroke patients, admitted at the IRCCS San Camillo rehabilitation Hospital in Venice (Italy), will be included in this study. Here, we describe the rehabilitation programs, clinical, neuropsychological, and physiological/imaging [including electroencephalography (EEG), transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) techniques] protocols set up for this study. Blood collection for the characterization of predictive biological biomarkers will also be taken. Measures derived from data acquired will be used as candidate predictors of motor recovery. Discussion/summary: The integration of cutting-edge physiological and imaging techniques, with clinical and cognitive assessment, dose of rehabilitation and biological variables will provide a unique opportunity to define a predictive model of recovery in stroke patients. Taken together, the data acquired in this project will help to define a model of rehabilitation induced sensorimotor recovery, with the final aim of developing personalized treatments promoting the greatest chance of recovery of the compromised functions

    Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors

    Get PDF
    Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury. In this study, the authors report that pluripotent stem cell-derived ventricular progenitors target loss of myocardium and fibrotic scarring to promote heart regeneration, thus offering new potential therapeutic strategies for heart injury.Funding Agencies|European Research Council (ERC) under the European Union [743225, 788381, 101021043]; German Research Foundation, Transregio Research Unit 152; German Research Foundation, Transregio Research Unit 267; Swedish Research Council Distinguish Professor Grant; German Centre for Cardiovascular Research (DZHK)</p

    Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube

    Get PDF
    Key message: The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Abstract: Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubules through biochemical and ultrastructural analyses in the pollen tube model system, where callose is an essential component of the cell wall. Results by native 2-D electrophoresis, isolation of callose synthase complex and far-western blot confirmed that callose synthase is associated with tubulin and can therefore interface with cortical microtubules. In contrast, actin and sucrose synthase were not permanently associated with callose synthase. Immunogold labeling showed colocalization between the enzyme and microtubules, occasionally mediated by vesicles. Overall, the data indicate that pollen tube callose synthase exerts its activity in cooperation with the microtubular cytoskeleton

    More tolerant than expected: Taking into account the ability of Cladonia portentosa to cope with increased nitrogen availability in environmental policy

    No full text
    The lichen Cladonia portentosa is generally considered to be sensitive to increased environmental nitrogen (N) deposition. However, the presence of this lichen in impacted environments suggests that it can cope with prolonged exposure to high N availability. To test the tolerance of this species to N, photosynthetic parameters, carbon and N concentrations and isotopic signature, chitin concentration, surface pH and extracellular enzymatic activity were measured in samples exposed for 11 years to different N doses and forms at the Whim bog N manipulation experimental site (United Kingdom). The results showed that C. portentosa is tolerant to long-term exposure to wet N deposition, maintaining its functionality with almost unaltered physiological parameters. The comparison of the proteome of short- and long-term exposed samples showed similar changes in protein expression suggesting that mechanisms to cope with N are not dependent on the exposure time even after more than a decade. Since empirical N Critical Loads are based on the response of sensitive components of the ecosystem, like C. portentosa, its capacity to cope with short- and long-term exposure to N needs to be recognized and taken into account when setting them, likewise, the significance of the form of N.Investigador - Funda√ß√£o para Ci√™ncia e Tecnologia (FCT) contract and the FCT projects IF/00964/2013 and UID/BIA/00329/2013 (2015‚Äď2018).info:eu-repo/semantics/publishedVersio

    Unravelling the potential of cricket-based hydrolysed sourdough on the quality of an innovative bakery product

    Get PDF
    The purpose of this research was to evaluate the potential of a sourdough containing cricket powder hydrolysate by the RO25 Yarrowia lipolytica strain to produce an innovative bakery product. RO25 hydrolysed cricket bread (RO25H-CB) was compared with control bread obtained from a traditional sourdough using wheat flour and with an additional bread control obtained from no-hydrolysed cricket powder sourdough. The results obtained showed that RO25H-CB had a highest amount of proteins and free fatty acids than wheat control bread, attributed to the well-known proteolytic and lipolytic activities of Y. lipolytica. Moreover, RO25H-CB sample was characterised by high content of health-promoting and aroma precursors lipids as well as a lowest biogenic amine index among samples analysed, suggesting for this sample a high overall quality respect to no hydrolysed cricket powder bread. Finally, the data relating the sensory analysis highlighted good application opportunities for RO25 cricket hydrolysate as ingredients for baking. In fact, RO25H-CB had received positive evaluations for almost all the parameters considered. These results demonstrated that hydrolysates from Y. lipolytica, compared to the no hydrolysed cricket, were able to impart specific sensory and qualitative characteristics to the final product, with positive feedback from the involved panellists

    Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology

    Get PDF
    Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed

    Distinct Tomato Cultivars Are Characterized by a Differential Pattern of Biochemical Responses to Drought Stress

    Get PDF
    Future climate scenarios suggest that crop plants will experience environmental changes capable of affecting their productivity. Among the most harmful environmental stresses is drought, defined as a total or partial lack of water availability. It is essential to study and understand both the damage caused by drought on crop plants and the mechanisms implemented to tolerate the stress. In this study, we focused on four cultivars of tomato, an economically important crop in the Mediterranean basin. We investigated the biochemical mechanisms of plant defense against drought by focusing on proteins specifically involved in this stress, such as osmotin, dehydrin, and aquaporin, and on proteins involved in the general stress response, such as HSP70 and cyclophilins. Since sugars are also known to act as osmoprotectants in plant cells, proteins involved in sugar metabolism (such as RuBisCO and sucrose synthase) were also analyzed. The results show crucial differences in biochemical behavior among the selected cultivars and highlight that the most tolerant tomato cultivars adopt quite specific biochemical strategies such as different accumulations of aquaporins and osmotins. The data set also suggests that RuBisCO isoforms and aquaporins can be used as markers of tolerance/susceptibility to drought stress and be used to select tomato cultivars within breeding programs

    The Church of S. Maria Delle Palate in Tusa (Messina, Italy): Digitization and Diagnostics for a New Model of Enjoyment

    Get PDF
    Cultural places represent the tangible part of the identity and historical heritage of a civilization as well as an extraordinary driving force for the economic development of a country. Within its huge asset, Italy counts a wide number of archaeological sites and monuments which, despite their cultural value, are totally cut off from the most important cultural routes. This paper aims to demonstrate how specific actions of digitization can contribute to valorize (restoring a cultural value) ‚Äėmarginal‚Äô landmarks, promoting their knowledge and inclusion. The case study described is represented by the Church of ‚ÄúSanta Maria delle Palate‚ÄĚ, located inside the well-known Archaeological Park of Halaesa Arconidea (Tusa, ME). The church, built in 1551 and subject to several renovations throughout the centuries, has been investigated as part of an interdisciplinary training and skill transfer project carried out by a CNR-IPCF research team. During the activities, the group of trainees approached a multi-analytic method for the study of many Sicilian places using different techniques such as laser scanning, photogrammetry, thermography and spectroscopy and collecting a large amount of information and data. In 2019, the building in question was the object of a complete architectural survey in order to obtain an accurate digital replica; moreover, the wall painting representing St. Francis, preserved in the southern nave, was investigated through non-invasive investigations (IR-imaging, XRF and Raman spectrometry) with the intention of collecting information about its state of preservation and nature of pigments used and help the restoration work, which would have been carried out in the following months. The result of the work is a combined ‚Äúdigital archive‚ÄĚ useful not only for the purposes of conservation, monitoring and dissemination, but as a container of information enjoyable at different levels of depth. In addition to the scientific outcomes achieved for the study of the painting, relevant from the historical and artistic point of view, we must underline the importance of the work for the implementation of a web-based platform where expert and inexpert users can virtually access the church virtual tour and search for specialized contents (e.g., measures, analyzes results). Media such as this are finally demonstrated to be able to promote the inclusion (e.g., for people unable to reach the place or with reducing mobility) and accessibility to cultural places during ordinary (maintenance, closure) or extraordinary events (pandemic)
    • ‚Ķ
    corecore