417 research outputs found

    Hypothesis testing for two population means: parametric or non-parametric test?

    Full text link
    The parametric Welch tt-test and the non-parametric Wilcoxon-Mann-Whitney test are the most commonly used two independent sample means tests. More recent testing approaches include the non-parametric, empirical likelihood and exponential empirical likelihood. However, the applicability of these non-parametric likelihood testing procedures is limited partially because of their tendency to inflate the type I error in small sized samples. In order to circumvent the type I error problem, we propose simple calibrations using the tt distribution and bootstrapping. The two non-parametric likelihood testing procedures, with and without those calibrations, are then compared against the Wilcoxon-Mann-Whitney test and the Welch tt-test. The comparisons are implemented via extensive Monte Carlo simulations on the grounds of type I error and power in small/medium sized samples generated from various non-normal populations. The simulation studies clearly demonstrate that a) the tt calibration improves the type I error of the empirical likelihood, b) bootstrap calibration improves the type I error of both non-parametric likelihoods, c) the Welch tt-test with or without bootstrap calibration attains the type I error and produces similar levels of power with the former testing procedures, and d) the Wilcoxon-Mann-Whitney test produces inflated type I error while the computation of an exact p-value is not feasible in the presence of ties with discrete data. Further, an application to real gene expression data illustrates the computational high cost and thus the impracticality of the non parametric likelihoods. Overall, the Welch t-test, which is highly computationally efficient and readily interpretable, is shown to be the best method when testing equality of two population means.Comment: Accepted for publication in the Journal of Statistical Computation and Simulatio

    Full-text publication of abstracts presented at European Orthodontic Society congresses

    Get PDF
    SUMMARYINTRODUCTION: Empirical evidence has indicated that only a subsample of studies conducted reach full-text publication and this phenomenon has become known as publication bias. A form of publication bias is the selectively delayed full publication of conference abstracts. The objective of this article was to examine the publication status of oral abstracts and poster-presentation abstracts, included in the scientific program of the 82nd and 83rd European Orthodontic Society (EOS) congresses, held in 2006 and 2007, and to identify factors associated with full-length publication. METHODS: A systematic search of PubMed and Google Scholar databases was performed in April 2013 using author names and keywords from the abstract title to locate abstract and full-article publications. Information regarding mode of presentation, type of affiliation, geographical origin, statistical results, and publication details were collected and analyzed using univariable and multivariable logistic regression. RESULTS: Approximately 51 per cent of the EOS 2006 and 55 per cent of the EOS 2007 abstracts appeared in print more than 5 years post congress. A mean period of 1.32 years elapsed between conference and publication date. Mode of presentation (oral or poster), use of statistical analysis, and research subject area were significant predictors for publication success. LIMITATIONS: Inherent discrepancies of abstract reporting, mainly related to presentation of preliminary results and incomplete description of methods, may be considered in analogous studies. CONCLUSIONS: On average 52.2 per cent of the abstracts presented at the two EOS conferences reached full publication. Abstracts presented orally, including statistical analysis, were more likely to get publishe

    Randomization in clinical trials in orthodontics: its significance in research design and methods to achieve it

    Get PDF
    Randomization is a key step in reducing selection bias during the treatment allocation phase in randomized clinical trials. The process of randomization follows specific steps, which include generation of the randomization list, allocation concealment, and implementation of randomization. The phenomenon in the dental and orthodontic literature of characterizing treatment allocation as random is frequent; however, often the randomization procedures followed are not appropriate. Randomization methods assign, at random, treatment to the trial arms without foreknowledge of allocation by either the participants or the investigators thus reducing selection bias. Randomization entails generation of random allocation, allocation concealment, and the actual methodology of implementing treatment allocation randomly and unpredictably. Most popular randomization methods include some form of restricted and/or stratified randomization. This article introduces the reasons, which make randomization an integral part of solid clinical trial methodology, and presents the main randomization schemes applicable to clinical trials in orthodontic

    Time relevance, citation of reporting guidelines, and breadth of literature search in systematic reviews in orthodontics

    Get PDF
    SummaryIntroduction: As the importance of systematic review (SR) conclusions relies upon the scientific rigor of methods and the currency of evidence, we aimed to investigate the currency of orthodontic SRs using as proxy the time from the initial search to publication. Additionally, SR information regarding reporting guidelines, registration, and literature searches were recorded when available. Materials and methods: A systematic PubMed search was carried out using the Clinical Queries page to identify orthodontic SRs cited between 1 January 2008 and 7 November 2013. Data related to reporting guidelines, review registration, dates of review processing, literature search, and abstract reporting were retrieved and classified by journal type. Survival analysis was used to assess the time to reach predefined manuscript stages for orthodontic and non-orthodontic journals. Results: One hundred twenty seven of the originally identified 585 SRs were considered eligible. The median interval from search until publication was 13.2 months (interquartile range: IQR = 9.7 months) irrespective of the journal type. There was evidence (P = 0.05) that SRs published by non-orthodontic journals appeared in PubMed faster than in orthodontic journals (non-orthodontic: median = 6.5 months; IQR = 5.7 months; orthodontic: median = 10.2 months; IQR = 5.6 months) from submission to publication and from acceptance to publication (non-orthodontic: median = 1.5 months; IQR = 2.4 months; orthodontic: median = 6.0 months; IQR = 6.2 months; P < 0.001). More than half of these SRs did not cite adherence to any reporting guidelines, whereas all but five studies were not prospectively registered. Search of unpublished research was undertaken in approximately 21 per cent and 29 per cent of the SRs published in non-orthodontic and orthodontic periodicals, respectively. Conclusions: This study indicates that SR users should be aware that median time for orthodontic SRs from search to publication is 13.2 months. SRs published in non-orthodontic journals are likely to be more current in terms of submission until time to publication and acceptance until time to publication compared with those published in orthodontic journal

    The Efficacy of Early Interventions for Children with Autism Spectrum Disorders: A Systematic Review and Meta-Analysis.

    Get PDF
    The superiority of early interventions for children with autism spectrum disorders (ASDs) compared to treatment as usual (TAU) has recently been questioned. This study was aimed to investigate the efficacy of early interventions in improving the cognitive ability, language, and adaptive behavior of pre-school children with ASDs through a systematic review of randomized controlled trials (RCTs). In total, 33 RCTs were included in the meta-analysis using the random effects model. The total sample consisted of 2581 children (age range: 12-132 months). Early interventions led to positive outcomes for cognitive ability (g = 0.32; 95% CI: 0.05, 0.58; p = 0.02), daily living skills (g = 0.35; 95% CI: 0.08, 0.63; p = 0.01), and motor skills (g = 0.39; 95% CI: 0.16, 0.62; p = 0.001), while no positive outcomes were found for the remaining variables. However, when studies without the blinding of outcome assessment were excluded, positive outcomes of early interventions only remained for daily living skills (g = 0.28; 95% CI: 0.04, 0.52; p = 0.02) and motor skills (g = 0.40; 95% CI: 0.11, 0.69; p = 0.007). Although early intervention might not have positive impacts on children with ASDs for several outcomes compared to controls, these results should be interpreted with caution considering the great variability in participant and intervention characteristics

    Reply

    Get PDF

    The effectiveness of laceback ligatures during initial orthodontic alignment: a systematic review and meta-analysis

    Get PDF
    Lacebacks may be used to limit unwanted incisor proclination during initial orthodontic alignment; however, their use has not met with universal approval. This systematic review aims to appraise the evidence in relation to the effectiveness of lacebacks in controlling incisor position during initial alignment. Electronic database searches of published literature (MEDLINE via Ovid, Cochrane Central Register of Controlled Trials, LILACS, and IBECS) and unpublished literature were performed. Search terms used included randomized controlled trial, controlled clinical trial, random allocation, double blind method, orthodontics, and laceback. Data were extracted using custom forms. Risk of bias assessment was made using the Cochrane Collaboration risk of bias tool. The quality of the evidence was also assessed using GRADE. Mean differences in incisor inclination and antero-posterior changes in incisor and molar position during alignment were calculated. Two studies involving 97 participants were found to be at low risk of bias and were included in the quantitative synthesis. The random effects meta-analysis demonstrated that the use of lacebacks was associated with 0.5 mm greater posterior movement of the incisors during alignment; this finding was of limited clinical importance and statistically non-significant [95 per cent confidence interval (CI): ‚ąí1.25, 0.25, P = 0.19]. Little difference (0.46 mm) was also found between laceback and non-laceback groups with regards to mesial molar movement (95 per cent CI: ‚ąí0.33, 1.24, P = 0.26). According to the GRADE assessment, the overall quality of evidence relating to the use of lacebacks was high. There is no evidence to support the use of lacebacks for the control of the sagittal position of the incisors during initial orthodontic alignmen

    Sample size in orthodontic randomized controlled trials: are numbers justified?

    Get PDF
    Sample size calculations are advocated by the Consolidated Standards of Reporting Trials (CONSORT) group to justify sample sizes in randomized controlled trials (RCTs). This study aimed to analyse the reporting of sample size calculations in trials published as RCTs in orthodontic speciality journals. The performance of sample size calculations was assessed and calculations verified where possible. Related aspects, including number of authors; parallel, split-mouth, or other design; single- or multi-centre study; region of publication; type of data analysis (intention-to-treat or per-protocol basis); and number of participants recruited and lost to follow-up, were considered. Of 139 RCTs identified, complete sample size calculations were reported in 41 studies (29.5 per cent). Parallel designs were typically adopted (n = 113; 81 per cent), with 80 per cent (n = 111) involving two arms and 16 per cent having three arms. Data analysis was conducted on an intention-to-treat (ITT) basis in a small minority of studies (n = 18; 13 per cent). According to the calculations presented, overall, a median of 46 participants were required to demonstrate sufficient power to highlight meaningful differences (typically at a power of 80 per cent). The median number of participants recruited was 60, with a median of 4 participants being lost to follow-up. Our finding indicates good agreement between projected numbers required and those verified (median discrepancy: 5.3 per cent), although only a minority of trials (29.5 per cent) could be examined. Although sample size calculations are often reported in trials published as RCTs in orthodontic speciality journals, presentation is suboptimal and in need of significant improvemen

    Does published orthodontic research account for clustering effects during statistical data analysis?

    Get PDF
    In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysi

    Cluster randomized clinical trials in orthodontics: design, analysis and reporting issues

    Get PDF
    Cluster randomized trials (CRTs) use as the unit of randomization clusters, which are usually defined as a collection of individuals sharing some common characteristics. Common examples of clusters include entire dental practices, hospitals, schools, school classes, villages, and towns. Additionally, several measurements (repeated measurements) taken on the same individual at different time points are also considered to be clusters. In dentistry, CRTs are applicable as patients may be treated as clusters containing several individual teeth. CRTs require certain methodological procedures during sample calculation, randomization, data analysis, and reporting, which are often ignored in dental research publications. In general, due to similarity of the observations within clusters, each individual within a cluster provides less information compared with an individual in a non-clustered trial. Therefore, clustered designs require larger sample sizes compared with non-clustered randomized designs, and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this article to highlight with relevant examples the important methodological characteristics of cluster randomized designs as they may be applied in orthodontics and to explain the problems that may arise if clustered observations are erroneously treated and analysed as independent (non-clustered
    • ‚Ķ
    corecore