2,548 research outputs found

    Comparing accuracy of tomosynthesis plus digital mammography or synthetic 2D mammography in breast cancer screening: baseline results of the MAITA RCT consortium.

    No full text
    AIM: The analyses here reported aim to compare the screening performance of digital tomosynthesis (DBT) versus mammography (DM). METHODS: MAITA is a consortium of four Italian trials, REtomo, Proteus, Impeto, and MAITA trial. The trials adopted a two-arm randomised design comparing DBT plus DM (REtomo and Proteus) or synthetic-2D (Impeto and MAITA trial) versus DM; multiple vendors were included. Women aged 45 to 69 years were individually randomised to one round of DBT or DM. FINDINGS: From March 2014 to February 2022, 50,856 and 63,295 women were randomised to the DBT and DM arm, respectively. In the DBT arm, 6656 women were screened with DBT plus synthetic-2D. Recall was higher in the DBT arm (5路84% versus 4路96%), with differences between centres. With DBT, 0路8/1000 (95% CI 0路3 to 1路3) more women received surgical treatment for a benign lesion. The detection rate was 51% higher with DBT, ie. 2路6/1000 (95% CI 1路7 to 3路6) more cancers detected, with a similar relative increase for invasive cancers and ductal carcinoma in situ. The results were similar below and over the age of 50, at first and subsequent rounds, and with DBT plus DM and DBT plus synthetic-2D. No learning curve was appreciable. Detection of cancers >= 20聽mm, with 2 or more positive lymph nodes, grade III, HER2-positive, or triple-negative was similar in the two arms. INTERPRETATION: Results from MAITA confirm that DBT is superior to DM for the detection of cancers, with a possible increase in recall rate. DBT performance in screening should be assessed locally while waiting for long-term follow-up results on the impact of advanced cancer incidence

    Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022

    Get PDF
    The current drought conditions across the Parana-La Plata Basin (LPB) in Brazil-Argentina have been the worst since 1944. While this area is characterized by a rainy season with a peak from October to April, the hydrological year 2020-2021 was very deficient in rainfall, and the situation extended into the 2021-2022 hydrological year. Below-normal rainfall was dominant in south-eastern Brazil, northern Argentina, Paraguay, and Uruguay, suggesting a late onset and weaker South American Monsoon and the continuation of drier conditions since 2021. In fact, in 2021 Brazilian south and south-east regions faced their worst droughts in nine decades, raising the spectre of possible power rationing given the grid dependence on hydroelectric plants. The Paran谩-La Plata Basin drought induced damages to agriculture and reduced crop production, including soybeans and maize, with effects on global crop markets. The drought situation continued in 2022 in the Pantanal region. Dry meteorological conditions are still present in the region at the end of September 2022 with below-average precipitation anomalies. Soil moisture anomaly and vegetation conditions are worst in the lower part of the La Plata Basin, in the southern regions. Conversely, upper and central part of the basin show partial and temporary recovery

    Erratum: Gauge theory applied to magnetic lattices

    No full text
    Original article: EPL, 140 (2022) 4600

    Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support

    Get PDF
    Outgassing or thruster鈥檚 generated contaminants are critical for optical surfaces and optical payloads because scientific measurements and, in general, the performances can be degraded or jeopardized by uncontrolled contamination. This is a well-known issue in space technology that is demonstrated by the growing usage of quartz crystal microbalances as a solution for measuring material outgassing properties data and characterizing the on-orbit contamination environment. Operation in space requires compatibility with critical requirements, especially the mechanical and thermal environments to be faced throughout the mission. This work provides the design of a holding structure based on 3D printing technology conceived to meet the environmental characteristics of space application, and in particular, to face harsh mechanical and thermal environments. A kinematic mounting has been conceived to grant compatibility with a large temperature range, and it has been designed by finite element methods to overcome loading during the launch phases and cope with a temperature working range down to cryogenic temperatures. Qualification in such environments has been performed on a mockup by testing a prototype of the holding assembly between 鈭110 掳C and 110 掳C and allowing verification of the mechanical resistance and stability of the electrical contacts for the embedded heater and sensor in that temperature range. Moreover, mechanical testing in a random environment characterized by an RMS acceleration level of 500 m/s2 and excitation frequency from 20 to 2000 Hz was successfully performed. The testing activity allowed for validation of the proposed design and opened the road to the possible implementation of the proposed design for future flight opportunities, also onboard micro or nanosatellites. Moreover, exploiting the manufacturing technology, the proposed design can implement an easy assembling and mounting of the holding system. At the same time, 3D printing provides a cost-effective solution even for small series production for ground applications, like monitoring the contaminants in thermo-vacuum chambers or clean rooms, or depositions chambers

    Enantiomer discrimination in absorption spectroscopy and in voltammetry: highlighting fascinating similarities and connections

    No full text
    Absorption spectroscopy and voltammetry, of known analogies and connections, share even more fascinating similarities and connections at a higher complexity level, when 鈥渦pgrading鈥 them with the ability to discriminate between enantiomers by chiral selector implementation. In both techniques either 鈥渕olecular鈥 selectors or 鈥渆lectromagnetic鈥 ones (L- versus R-circularly polarized light components for spectroscopy, 伪- versus 尾-spin electrons for voltammetry) can be considered; moreover, external magnetic field application can replace a truly chiral actor. A tentative schematization is provided. Analogies and connections also concern molecular features of the enantiodiscrimination actors. In both techniques outstanding performances are obtained with inherently chiral molecules, in which a conjugated backbone with tailored torsion is source of chirality as well as spectroscopic and electrochemical activity, in an attractive three-fold interconnection. Their outstanding effects can be justified by a combination of chemical and electromagnetic properties (excellent potential molecular spin filters), a fascinating challenge for future developments

    Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value 鈮 0.05 and Fold change 鈮-1.5 or 鈮1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy