5,199 research outputs found

    Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    Full text link
    Motivated by possible applications within the framework of anti-de Sitter gravity/Conformal Field Theory (AdS/CFT) correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by a nonlinear electrodynamics (NED) are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary NED Lagrangian, in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Fall-off conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.Comment: 30 pages, no figures; a few references added; final version for PR

    An efficient estimator for locally stationary Gaussian long-memory processes

    Full text link
    This paper addresses the estimation of locally stationary long-range dependent processes, a methodology that allows the statistical analysis of time series data exhibiting both nonstationarity and strong dependency. A time-varying parametric formulation of these models is introduced and a Whittle likelihood technique is proposed for estimating the parameters involved. Large sample properties of these Whittle estimates such as consistency, normality and efficiency are established in this work. Furthermore, the finite sample behavior of the estimators is investigated through Monte Carlo experiments. As a result from these simulations, we show that the estimates behave well even for relatively small sample sizes.Comment: Published in at http://dx.doi.org/10.1214/10-AOS812 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Holographic correlation functions in Critical Gravity

    Get PDF
    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 11-point functions for a generic boundary geometric source.Comment: 21 pages, no figures,extended discussion on two-point functions, final version to appear in JHE

    Spiky ice and penitente tilting

    Get PDF
    Indexación: Scopus.Under certain conditions, at high altitude, the surface of snow develops spike-like structures known as penitentes. This is a rather counterintuitive phenomenon, which is a consequence of surface sublimation at a given point as a result of the incidence of light scattered by the surrounding region. Following the existing literature, we model the time evolution of the phenomenon described above as a 1D diffusion equation with a non-local source term, as it represents the light coming from all the line of sight defined for a point of the curve. For small initial perturbations in the surface, the system undergoes a thermodynamic instability which triggers the formation of spikes. For sunlight coming in at a given angle, numerical simulations account for a feature observed in the real system: penitentes get tilted in the direction of the sunlight. © Published under licence by IOP Publishing Ltd.We thank R. Rojas and R. Soto for interesting discussions. P.G. was financially supported by Facultad de Ciencias Exactas, UNAB, to attend SOCHIFI 2016 Meeting.https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/01200

    Conserved quantities for a charged rotating black holes in 5D Einstein-Maxwell-Chern-Simons theory

    Get PDF
    Indexación: Scopus.In this work, we compute the conserved quantities of a charged rotating black hole which appears as the solution of Einstein-Maxwell action in five dimensions coupled to a Chern-Simons term for U(1) field. The addition of the Chern-Simons term will modify the Maxwell equations and the definition of charge but not the Einstein field equations. Upon the addition of suitable boundary terms for the pure gravity sector of the theory, which depend on the extrinsic and intrinsic curvatures (Kounterterms), we obtain the correct conserved quantities of the solution. © Published under licence by IOP Publishing Ltd.We thank Giorgos Anastasiou and David Rivera-Betancour for insightful discussions. This work was funded in part by FONDECYT Grant 1131075, UNAB Grant DI-1336-16/RG and CONICYT Grant DPI 20140115.https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/01202
    • …
    corecore