391 research outputs found

    Impacts of Co-Solvent Flushing on Microbial Populations Capable of Degrading Trichloroethylene

    Get PDF
    With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms

    Research potential and limitations of trace analyses of cremated remains

    Get PDF
    Human cremation is a common funeral practice all over the world and willpresumably become an even more popular choice for interment in thefuture. Mainly for purposes of identification, there is presently agrowing need to perform trace analyses such as DNA or stable isotopeanalyses on human remains after cremation in order to clarify pendingquestions in civil or criminal court cases. The aim of this study was toexperimentally test the potential and limitations of DNA and stableisotope analyses when conducted on cremated remains.For this purpose, tibiae from modern cattle were experimentally crematedby incinerating the bones in increments of 100 degrees C until a maximumof 1000 degrees C was reached. In addition, cremated human remains werecollected from a modern crematory. The samples were investigated todetermine level of DNA preservation and stable isotope values (C and Nin collagen, C and O in the structural carbonate, and Sr in apatite).Furthermore, we assessed the integrity of microstructural organization,appearance under UV-light, collagen content, as well as the mineral andcrystalline organization. This was conducted in order to provide ageneral background with which to explain observed changes in the traceanalyses data sets. The goal is to develop an efficacious screeningmethod for determining at which degree of burning bone still retains itsoriginal biological signals. We found that stable isotope analysis ofthe tested light elements in bone is only possible up to a heat exposureof 300 degrees C while the isotopic signal from strontium remainsunaltered even in bones exposed to very high temperatures. DNA-analysesseem theoretically possible up to a heat exposure of 600 degrees C butcan not be advised in every case because of the increased risk ofcontamination. While the macroscopic colour and UV-fluorescence ofcremated bone give hints to temperature exposure of the bone’s outersurface, its histological appearance can be used as a reliable indicatorfor the assessment of the overall degree of burning

    Methods for microbial DNA extraction from soil for PCR amplification

    Get PDF
    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size

    The 3′ Untranslated Region of the Rabies Virus Glycoprotein mRNA Specifically Interacts with Cellular PCBP2 Protein and Promotes Transcript Stability

    Get PDF
    Viral polymerase entry and pausing at intergenic junctions is predicted to lead to a defined polarity in the levels of rhabdovirus gene expression. Interestingly, we observed that the rabies virus glycoprotein mRNA is differentially over-expressed based on this model relative to other transcripts during infection of 293T cells. During infection, the rabies virus glycoprotein mRNA also selectively interacts with the cellular poly(rC)-binding protein 2 (PCBP2), a factor known to influence mRNA stability. Reporter assays performed both in electroporated cells and in a cell-free RNA decay system indicate that the conserved portion of the 3′ UTR of the rabies virus glycoprotein mRNA contains an RNA stability element. PCBP2 specifically interacts with reporter transcripts containing this 72 base 3′ UTR sequence. Furthermore, the PCBP2 interaction is directly associated with the stability of reporter transcripts. Therefore, we conclude that PCBP2 specifically and selectively interacts with the rabies virus glycoprotein mRNA and that this interaction may contribute to the post-transcriptional regulation of glycoprotein expression

    The TAL Effector PthA4 Interacts with Nuclear Factors Involved in RNA-Dependent Processes Including a HMG Protein That Selectively Binds Poly(U) RNA

    Get PDF
    Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control
    • …
    corecore