894 research outputs found

    Radioimmunotherapy of Fungal Diseases: The Therapeutic Potential of Cytocidal Radiation Delivered by Antibody Targeting Fungal Cell Surface Antigens

    Get PDF
    Radioimmunotherapy is the targeted delivery of cytocidal radiation to cells via specific antibody. Although mature for the treatment of cancer, RIT of infectious diseases is in pre-clinical development. However, as there is an obvious and urgent need for novel approaches to treat infectious diseases, RIT can provide us with a powerful approach to combat serious diseases, including invasive fungal infections. For example, RIT has proven more effective than standard amphotericin B for the treatment of experimental cryptococcosis. This review will discuss the concepts of RIT, its applications for infectious diseases, and the strides made to date to bring RIT of infectious diseases to fruition. Finally, we will discuss the potential of PAN-FUNGAL RIT, the targeting of conserved fungal cell surface antigens by RIT, as a treatment modality for fungi prior to the formal microbiological identification of the specific pathogen. In sum, RIT provides a mechanism for the targeted killing of drug susceptible or resistant fungi irrespective of the host immune status and may dramatically reduce the length of therapy currently required for many invasive fungal diseases

    Histoplasma Virulence and Host Responses

    Get PDF
    Histoplasma capsulatum is the most prevalent cause of fungal respiratory disease. The disease extent and outcomes are the result of the complex interaction between the pathogen and a host's immune system. The focus of our paper consists in presenting the current knowledge regarding the multiple facets of the dynamic host-pathogen relationship in the context of the virulence arsenal displayed by the fungus and the innate and adaptive immune responses of the host

    Fatty Acid Synthase Impacts the Pathobiology of Candida parapsilosis In Vitro and during Mammalian Infection

    Get PDF
    Cytosolic fungal fatty acid synthase is composed of two subunits α and β, which are encoded by Fas1 and Fas2 genes. In this study, the Fas2 genes of the human pathogen Candida parapsilosis were deleted using a modified SAT1 flipper technique. CpFas2 was essential in media lacking exogenous fatty acids and the growth of Fas2 disruptants (Fas2 KO) was regulated by the supplementation of different long chain fatty acids, such as myristic acid (14∶0), palmitic acid (16∶0), and Tween 80, in a dose-specific manner. Lipidomic analysis revealed that Fas2 KO cells were severely restricted in production of unsaturated fatty acids. The Fas2 KO strains were unable to form normal biofilms and were more efficiently killed by murine-like macrophages, J774.16, than the wild type, heterozygous and reconstituted strains. Furthermore, Fas2 KO yeast were significantly less virulent in a systemic murine infection model. The Fas2 KO cells were also hypersensitive to human serum, and inhibition of CpFas2 in WT C. parapsilosis by cerulenin significantly decreased fungal growth in human serum. This study demonstrates that CpFas2 is essential for C. parapsilosis growth in the absence of exogenous fatty acids, is involved in unsaturated fatty acid production, influences fungal virulence, and represents a promising antifungal drug target

    Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species

    Get PDF
    Cryptococcus sp. are basidiomycete yeasts which can be found widely, free-living in the environment. Interactions with natural predators, such as amoebae in the soil, are thought to have promoted the development of adaptations enabling the organism to survive inside human macrophages. Infection with Cryptococcus in humans occurs following inhalation of desiccated yeast cells or spore particles and may result in fatal meningoencephalitis. Human disease is caused almost exclusively by the Cryptococcus neoformans species complex, which predominantly infects immunocompromised patients, and the Cryptococcus gattii species complex, which is capable of infecting immunocompetent individuals. The nutritional requirements of Cryptococcus are critical for its virulence in animals. Cryptococcus has evolved a broad range of nutrient acquisition strategies, many if not most of which also appear to contribute to its virulence, enabling infection of animal hosts. In this review, we summarise the current understanding of nutritional requirements and acquisition in Cryptococcus and offer perspectives to its evolution as a significant pathogen of humans

    Antibody Therapy for Histoplasmosis

    Get PDF
    The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole, and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are being sought. Over the past 10 years, studies have demonstrated that monoclonal antibodies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory molecules. This review will detail our current knowledge regarding the impact of antibody therapy on histoplasmosis

    Surface Architecture of Histoplasma Capsulatum

    Get PDF
    The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease
    corecore