1,435 research outputs found

    Fidelity decay for local perturbations: microwave evidence for oscillating decay exponents

    Get PDF
    We study fidelity decay in classically chaotic microwave billiards for a local, piston-like boundary perturbation. We experimentally verify a predicted non-monotonic cross-over from the Fermi Golden Rule to the escape-rate regime of the Loschmidt echo decay with increasing local boundary perturbation. In particular, we observe pronounced oscillations of the decay rate as a function of the piston position which quantitatively agree with corresponding theoretical results based on a refined semiclassical approach for local boundary perturbations

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    Corpuscular Event-by-Event Simulation of Quantum Optics Experiments: Application to a Quantum-Controlled Delayed-Choice Experiment

    Full text link
    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. The approach is illustrated by application to a recent proposal for a quantum-controlled delayed choice experiment, demonstrating that also this thought experiment can be understood in terms of particle processes only.Comment: Invited paper presented at FQMT11. Accepted for publication in Physica Scripta 27 June 201

    Statistical properties of random density matrices

    Full text link
    Statistical properties of ensembles of random density matrices are investigated. We compute traces and von Neumann entropies averaged over ensembles of random density matrices distributed according to the Bures measure. The eigenvalues of the random density matrices are analyzed: we derive the eigenvalue distribution for the Bures ensemble which is shown to be broader then the quarter--circle distribution characteristic of the Hilbert--Schmidt ensemble. For measures induced by partial tracing over the environment we compute exactly the two-point eigenvalue correlation function.Comment: 8 revtex pages with one eps file included, ver. 2 - minor misprints correcte

    Use of information on disease diagnoses from databases for animal health economic, welfare and food safety purposes: strengths and limitations of recordings

    Get PDF
    Many animal health, welfare and food safety databases include data on clinical and test-based disease diagnoses. However, the circumstances and constraints for establishing the diagnoses vary considerably among databases. Therefore results based on different databases are difficult to compare and compilation of data in order to perform meta-analysis is almost impossible. Nevertheless, diagnostic information collected either routinely or in research projects is valuable in cross comparisons between databases, but there is a need for improved transparency and documentation of the data and the performance characteristics of tests used to establish diagnoses. The objective of this paper is to outline the circumstances and constraints for recording of disease diagnoses in different types of databases, and to discuss these in the context of disease diagnoses when using them for additional purposes, including research. Finally some limitations and recommendations for use of data and for recording of diagnostic information in the future are given. It is concluded that many research questions have such a specific objective that investigators need to collect their own data. However, there are also examples, where a minimal amount of extra information or continued validation could make sufficient improvement of secondary data to be used for other purposes. Regardless, researchers should always carefully evaluate the opportunities and constraints when they decide to use secondary data. If the data in the existing databases are not sufficiently valid, researchers may have to collect their own data, but improved recording of diagnostic data may improve the usefulness of secondary diagnostic data in the future

    Optimal purification of thermal graph states

    Get PDF
    In this paper, a purification protocol is presented and its performance is proven to be optimal when applied to a particular subset of graph states that are subject to local Z-noise. Such mixed states can be produced by bringing a system into thermal equilibrium, when it is described by a Hamiltonian which has a particular graph state as its unique ground state. From this protocol, we derive the exact value of the critical temperature above which purification is impossible, as well as the related optimal purification rates. A possible simulation of graph Hamiltonians is proposed, which requires only bipartite interactions and local magnetic fields, enabling the tuning of the system temperature.Comment: 5 pages, 4 figures v2: published versio

    Pediatric Emergencies in Helicopter Emergency Medical Services:A National Population-Based Cohort Study From Denmark

    Get PDF
    Study objective: To examine the diagnostic pattern, level of severity of illness or injuries, and mortality among children for whom a physician-staffed helicopter emergency medical service (HEMS) was dispatched. Methods: Population-based cohort study including patients aged less than 16 years treated by the Danish national HEMS from October 1, 2014, to September 30, 2018. Diagnoses were retrieved from inhospital medical records, and the severity of illness or injuries was assessed by a severity score on scene, administration of advanced out-of-hospital care, need for intensive care in a hospital, and mortality. Results: In total, 651 HEMS missions included pediatric patients aged less than 1 year (9.2%), 1 to 2 years (29.0%), 3 to 7 years (28.3%), and 8 to 15 years (33.5%). A third of the patients had critical emergencies (29.6%), and for 20.1% of the patients, 1 or more out-of-hospital interventions were performed: intubation, mechanical chest compressions, intraosseous vascular access, blood transfusion, chest tube insertion, and/or ultrasound examination. Among the 525 patients with hospital follow-up, the most frequent hospital diagnoses were injuries (32.2%), burns (11.2%), and respiratory diseases (7.8%). Within 24 hours of the mission, 18.1% of patients required intensive care. Twenty-nine patients (5.1%, 95% confidence interval [CI] 3.6 to 7.3) died either on or within 1 day of the mission, and the cumulative 30-day mortality was 35 of 565 (6.2%, 95% CI 4.5 to 8.5) (N¼565 first-time missions). Conclusion: On Danish physician-staffed HEMS missions, 1 in 5 pediatric patients required advanced out-of-hospital care. Among hospitalized patients, nearly one-fifth of the patients required immediate intensive care and 6.2% died within 30 days of the mission.publishedVersio

    Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.</p> <p>Results</p> <p>We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides.</p> <p>Conclusions</p> <p>The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at <url>http://bordnerlab.org/RTA/</url>.</p

    Bures volume of the set of mixed quantum states

    Full text link
    We compute the volume of the N^2-1 dimensional set M_N of density matrices of size N with respect to the Bures measure and show that it is equal to that of a N^2-1 dimensional hyper-halfsphere of radius 1/2. For N=2 we obtain the volume of the Uhlmann 3-D hemisphere, embedded in R^4. We find also the area of the boundary of the set M_N and obtain analogous results for the smaller set of all real density matrices. An explicit formula for the Bures-Hall normalization constants is derived for an arbitrary N.Comment: 15 revtex pages, 2 figures in .eps; ver. 3, Eq. (4.19) correcte
    • …
    corecore