227 research outputs found

    Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms

    Get PDF
    © 2018 Elsevier Ltd Respiratory symptoms are important indicators of respiratory diseases. Both genetic and environmental factors contribute to respiratory symptoms development but less is known about gene-environment interactions. We aimed to assess interactions between single nucleotide polymorphisms (SNPs) and occupational exposures on respiratory symptoms cough, dyspnea and phlegm. As identification cohort LifeLines I (n = 7976 subjects) was used. Job-specific exposure was estimated using the ALOHA + job exposure matrix. SNP-by-occupational exposure interactions on respiratory symptoms were tested using logistic regression adjusted for gender, age, and current smoking. SNP-by-exposure interactions with a p-value <10 −4 were tested for replication in two independent cohorts: LifeLines II (n = 5260) and the Vlagtwedde-Vlaardingen cohort (n = 1529). The interaction estimates of the replication cohorts were meta-analyzed using PLINK. Replication was achieved when the meta-analysis p-value was <0.05 and the interaction effect had the same direction as in the identification cohort. Additionally, we assessed whether replicated SNPs associated with gene expression by analyzing if they were cis-acting expression quantitative trait loci (eQTL) in lung tissue. In the replication meta-analysis, sixteen out of 477 identified SNP-by-occupational exposure interactions had a p-value <0.05 and 9 of these interactions had the same direction as in the identification cohort. Several identified loci were plausible candidates for respiratory symptoms, such as TMPRSS9, SERPINH1, TOX3, and ARHGAP18. Three replicated SNPs were cis-eQTLs for FCER1A, CHN1, and TIMM13 in lung tissue. Taken together, this genome-wide SNP-by-occupational exposure interaction study in relation to cough, dyspnea, and phlegm identified several suggestive susceptibility genes. Further research should determine if these genes are true susceptibility loci for respiratory symptoms in relation to occupational exposures

    Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences

    Get PDF
    Different vaccine approaches cope with HIV-1 diversity, ranging from centralized1–4 to variability-encompassing5–7 antigens. For all these strategies, a concern remains: how does HIV-1 diversity impact epitope recognition by the immune system? We studied the relationship between HIV-1 diversity and CD8+ T Lymphocytes (CTL) targeting of HIV-1 subtype B Nef using 944 peptides (10-mers overlapping by nine amino acids (AA)) that corresponded to consensus peptides and their most common variants in the HIV-1-B virus population. IFN-γ ELISpot assays were performed using freshly isolated PBMC from 26 HIV-1-infected persons. Three hundred and fifty peptides elicited a response in at least one individual. Individuals targeted a median of 7 discrete regions. Overall, 33% of responses were directed against viral variants but not elicited against consensus-based test peptides. However, there was no significant relationship between the frequency of a 10-mer in the viral population and either its frequency of recognition (Spearman's correlation coefficient ρ = 0.24) or the magnitude of the responses (ρ = 0.16). We found that peptides with a single mutation compared to the consensus were likely to be recognized (especially if the change was conservative) and to elicit responses of similar magnitude as the consensus peptide. Our results indicate that cross-reactivity between rare and frequent variants is likely to play a role in the expansion of CTL responses, and that maximizing antigenic diversity in a vaccine may increase the breadth and depth of CTL responses. However, since there are few obvious preferred pathways to virologic escape, the diversity that may be required to block all potential escape pathways may be too large for a realistic vaccine to accommodate. Furthermore, since peptides were not recognized based on their frequency in the population, it remains unclear by which mechanisms variability-inclusive antigens (i.e., constructs enriched with frequent variants) expand CTL recognition

    Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    Get PDF
    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2

    HIV-Specific Probabilistic Models of Protein Evolution

    Get PDF
    Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1–the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )

    Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

    Get PDF
    Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55 × 10(-151)). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases

    Human Lung Tissue Transcriptome:Influence of Sex and Age

    Get PDF
    Background Sex and age strongly influence the pathophysiology of human lungs, but scarce information is available about their effects on pulmonary gene expression. Methods We followed a discovery-validation strategy to identify sex-and age-related transcriptional differences in lung. Results We identified transcriptional profiles significantly associated with sex (215 genes; FDR <0.05) and age at surgery (217 genes) in non-involved lung tissue resected from 284 lung adenocarcinoma patients. When these profiles were tested in three independent series of non-tumor lung tissue from an additional 1,111 patients, we validated the association with sex and age for 25 and 22 genes, respectively. Among the 17 sex-biased genes mapping on chromosome X, 16 have been reported to escape X-chromosome inactivation in other tissues or cells, suggesting that this mechanism influences lung transcription too. Our 22 age-related genes partially overlap with genes modulated by age in other tissues, suggesting that the aging process has similar consequences on gene expression in different organs. Finally, seven genes whose expression was modulated by sex in non-tumor lung tissue, but no age-related gene, were also validated using publicly available data from 990 lung adenocarcinoma samples, suggesting that the physiological regulatory mechanisms are only partially active in neoplastic tissue. Conclusions Gene expression in non-tumor lung tissue is modulated by both sex and age. These findings represent a validated starting point for research on the molecular mechanisms underlying the observed differences in the course of lung diseases among men and women of different ages
    corecore