6 research outputs found

    Differential expression of akirin gene in black tiger shrimp Penaeus monodon in response to immunostimulant administration and infections with Vibrio harveyi and white spot syndrome virus

    Get PDF
    The akirin gene, which is strictly localized in the nucleus, plays a critical role in regulating antimicrobial peptide transcription, and has parallel functions to NF-kappa B signaling pathway in both vertebrates and invertebrates. In shrimp, the akirin gene is expressed as innate immunity in response to microbial infection. In the present study, expression of akirin gene in Penaeus monodon with respect to Vibrio harveyi and white spot syndrome virus (WSSV) infections and immunostimulant (beta-glucan) administration were investigated by quantitative polymerase chain reaction. The gene was expressed in various tissue samples of healthy shrimp. Maximum level of expression was immediately after V. harveyi infection, suggesting that it may be an early response gene. Gene expression was remarkably upregulated in the lymphoid organ, gill, and hepatopancreas, whereas downregulation was observed in hemocytes compared with the control. In the case of WSSV-infected samples, the akirin gene was significantly downregulated in the lymphoid organ but there was no significant difference in expression pattern in hemocytes compared to the control. In gill tissue, maximum expression was observed after 2 hr of infection, the same in hepatopancreas. Experimental challenge of beta-glucan fed shrimp infected with V. harveyi and WSSV resulted in significant upregulation of akirin gene expression in lymphoid and gill tissue

    The Intestinal Mycobiota in Wild Zebrafish Comprises Mainly Dothideomycetes While Saccharomycetes Predominate in Their Laboratory-Reared Counterparts

    Get PDF
    As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota

    Expression of Toll-like receptors (TLR), in lymphoid organ of black tiger shrimp (Penaeus monodon) in response to Vibrio harveyi infection

    No full text
    The Toll-like receptors (TLR), being pattern recognition molecules, are a powerful first line of defense in response to pathogen invasion. They are known to play a crucial role in detecting and binding to the microbial molecule and triggering a non-specific immune response. Quantitative real time PCR (qPCR) expression of the TLR gene was studied in healthy and Vibrio harveyi infected black tiger shrimp (Penaeus monodon). Lymphoid tissue expression of TLR in V. harveyi infected animals 24 h post injection showed statistically significant up regulation of the gene as compared to the control animals sham injected with phosphate buffered saline (PBS). The qPCR expression pattern of TLR at different time points in shrimp administered with the immunostimulant glucan for 6 days by oral feeding followed by challenge with V. harveyi showed statistically significant level at 48 h post bacterial challenge as compared to the control (immunostimulant treated) animals sham injected with PBS. The novelty of the study is that it elicits the role of TLRs as important response proteins of the innate immune system in the shrimp

    Image_1.PDF

    No full text
    <p>As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota.</p

    Table_1.PDF

    No full text
    <p>As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota.</p

    Differential expression of akirin

    No full text
    The akirin gene, which is strictly localized in the nucleus, plays a critical role in regulating antimicrobial peptide transcription, and has parallel functions to NF-kappa B signaling pathway in both vertebrates and invertebrates. In shrimp, the akirin gene is expressed as innate immunity in response to microbial infection. In the present study, expression of akirin gene in Penaeus monodon with respect to Vibrio harveyi and white spot syndrome virus (WSSV) infections and immunostimulant (beta-glucan) administration were investigated by quantitative polymerase chain reaction. The gene was expressed in various tissue samples of healthy shrimp. Maximum level of expression was immediately after V. harveyi infection, suggesting that it may be an early response gene. Gene expression was remarkably upregulated in the lymphoid organ, gill, and hepatopancreas, whereas downregulation was observed in hemocytes compared with the control. In the case of WSSV-infected samples, the akirin gene was significantly downregulated in the lymphoid organ but there was no significant difference in expression pattern in hemocytes compared to the control. In gill tissue, maximum expression was observed after 2 hr of infection, the same in hepatopancreas. Experimental challenge of beta-glucan fed shrimp infected with V. harveyi and WSSV resulted in significant upregulation of akirin gene expression in lymphoid and gill tissue
    corecore