178 research outputs found

    Molecular assessment of mycobacterial burden in the treatment of nontuberculous mycobacterial disease

    No full text
    Introduction Nontuberculous pulmonary disease causes significant morbidity and mortality. Efforts to tackle infections are hampered by the lack of reliable biomarkers for diagnosis, assessment and prognostication. The aim of this study was to develop molecular assays capable of identifying and quantifying multiple nontuberculous mycobacterial (NTM) species and to examine their utility in following individual patients’ clinical courses. Methods DNA was extracted from 410 sputum samples obtained longitudinally from a cohort of 38 patients who were commencing treatment for either Mycobacterium abscessus or Mycobacterium avium complex or who were patients with bronchiectasis who had never had positive cultures for mycobacteria. NTM quantification was performed with quantitative PCR assays developed in-house. Results The molecular assays had high in vitro sensitivity and specificity for the detection and accurate quantification of NTM species. The assays successfully identified NTM DNA from human sputum samples (in vivo sensitivity: 0.86–0.87%; specificity: 0.62–0.95%; area under the curve: 0.74–0.92). A notable association between NTM copy number and treatment (Friedman ANOVA (df)=22.8 (3), p≤0.01 for M. abscessus treatment group) was also demonstrated. Conclusion The quantitative PCR assays developed in this study provide affordable, real-time and rapid measurement of NTM burden, with significant implications for prompt management decisions

    An invisible threat? Aspergillus positive cultures and co-infecting bacteria in airway samples

    No full text
    Background: Aspergillus fumigatus (Af) infection is associated with poor lung health in chronic suppurative lung diseases but often goes undetected. We hypothesised that inhibition of Af growth by Pseudomonas aeruginosa (Pa) increases the frequency of false-negative Af culture in co-infected people. Using a substantial group of cystic fibrosis (CF) airway samples, we assessed the relationship between Af and bacterial pathogens, additionally comparing fungal culture with next-generation sequencing. Methods: Frequency of co-culture was assessed for 44,554 sputum/BAL cultures, from 1,367 CF patients between the years 2010–2020. In a subgroup, Internal Transcribed Spacer-2 (ITS2) fungal sequencing was used to determine sequencing-positive, culture-negative (S+/C-) rates. Results: Pa+ samples were nearly 40% less likely (P<0.0001) than Pa- samples to culture Af, an effect that was also seen with some other Gram-negative isolates. This impact varied with Pa density and appeared to be moderated by Staphylococcus aureus co-infection. Sequencing identified Af-S+/C- for 40.1% of tested sputa. Samples with Pa had higher rates of Af-S+/C- (49.3%) than those without (35.7%; RR 1.38 [1.02–1.93], P<0.05). Af-S+/C- rate was not changed by other common bacterial infections. Pa did not affect the S+/C- rates of Candida, Exophiala or Scedosporium. Conclusions: Pa/ Af co-positive cultures are less common than expected in CF. Our findings suggest an Af-positive culture is less likely in the presence of Pa. Interpretation of negative cultures should be cautious, particularly in Pa-positive samples, and a companion molecular diagnostic could be useful. Further work investigating mechanisms, alternative detection techniques and other chronic suppurative lung diseases is needed

    Integrated genomics point to immune vulnerabilities in pleural mesothelioma.

    Get PDF
    Funder: Libor Fund grant from the UK Department of Health, by the British Lung Foundation and by the Asmarley FoundationFunder: UK Medical Research CouncilPleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.32), observed in 21% of 118 tumours, resulted in disordered expression of transcripts from Hedgehog pathways and the T-cell synapse including VISTA. Co-deletion of Interferon Type I genes and CDKN2A was present in half of tumours and was a predictor of poor survival. We also found previously unrecognised deletions in RB1 in 26% of cases and show sub-micromolar responses to downstream PLK1, CHEK1 and Aurora Kinase inhibitors in primary mesothelioma cells. Defects in Hippo pathways that included RASSF7 amplification and NF2 or LATS1/2 mutations were present in 50% of tumours and were accompanied by micromolar responses to the YAP1 inhibitor Verteporfin. Our results suggest new therapeutic avenues in mesothelioma and indicate targets and biomarkers for immunotherapy

    Respiratory viral infection alters the gut microbiota by inducing inappetence

    Get PDF
    ABSTRACT Respiratory viral infections are extremely common, but their impacts on the composition and function of the gut microbiota are poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here, we show that weight loss during respiratory syncytial virus (RSV) or influenza virus infection was due to decreased food consumption, and that the fasting of mice altered gut microbiota composition independently of infection. While the acute phase tumor necrosis factor alpha (TNF-α) response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, the depletion of CD8+ cells increased food intake and prevented weight loss, resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the fecal gut metabolome, with a significant shift in lipid metabolism. Sphingolipids, polyunsaturated fatty acids (PUFAs), and the short-chain fatty acid (SCFA) valerate were all increased in abundance in the fecal metabolome following RSV infection. Whether this and the impact of infection-induced anorexia on the gut microbiota are part of a protective anti-inflammatory response during respiratory viral infections remains to be determined. IMPORTANCE The gut microbiota has an important role in health and disease: gut bacteria can generate metabolites that alter the function of immune cells systemically. Understanding the factors that can lead to changes in the gut microbiome may help to inform therapeutic interventions. This is the first study to systematically dissect the pathway of events from viral lung infection to changes in gut microbiota. We show that the cellular immune response to viral lung infection induces inappetence, which in turn alters the gut microbiome and metabolome. Strikingly, there was an increase in lipids that have been associated with the resolution of disease. This opens up new paths of investigation: first, what is the (presumably secreted) factor made by the T cells that can induce inappetence? Second, is inappetence an adaptation that accelerates recovery from infection, and if so, does the microbiome play a role in this

    The fungal airway microbiome in cystic fibrosis and non-cystic fibrosis bronchiectasis

    No full text
    Background The prevalence of fungal disease in cystic fibrosis (CF) and non-CF bronchiectasis is increasing and the clinical spectrum is widening. Poor sensitivity and a lack of standard diagnostic criteria renders interpretation of culture results challenging. In order to develop effective management strategies, a more accurate and comprehensive understanding of the airways fungal microbiome is required. The study aimed to use DNA sequences from sputum to assess the load and diversity of fungi in adults with CF and non-CF bronchiectasis. Methods Next generation sequencing of the ITS2 region was used to examine fungal community composition (n = 176) by disease and underlying clinical subgroups including allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, non-tuberculous mycobacteria, and fungal bronchitis. Patients with no known active fungal disease were included as disease controls. Results ITS2 sequencing greatly increased the detection of fungi from sputum. In patients with CF fungal diversity was lower, while burden was higher than those with non-CF bronchiectasis. The most common operational taxonomic unit (OTU) in patients with CF was Candida parapsilosis (20.4%), whereas in non-CF bronchiectasis sputum Candida albicans (21.8%) was most common. CF patients with overt fungal bronchitis were dominated by Aspergillus spp., Exophiala spp., Candida parapsilosis or Scedosporium spp. Conclusion This study provides a framework to more accurately characterize the extended spectrum of fungal airways diseases in adult suppurative lung diseases
    • …