539 research outputs found

    Hyper-realistic face masks : a new challenge in person identification

    Get PDF
    We often identify people using face images. This is true in occupational settings such as passport control as well as in everyday social environments. Mapping between images and identities assumes that facial appearance is stable within certain bounds. For example, a person's apparent age, gender and ethnicity change slowly, if at all. It also assumes that deliberate changes beyond these bounds (i.e., disguises) would be easy to spot. Hyper-realistic face masks overturn these assumptions by allowing the wearer to look like an entirely different person. If unnoticed, these masks break the link between facial appearance and personal identity, with clear implications for applied face recognition. However, to date, no one has assessed the realism of these masks, or specified conditions under which they may be accepted as real faces. Herein, we examined incidental detection of unexpected but attended hyper-realistic masks in both photographic and live presentations. Experiment 1 (UK; n = 60) revealed no evidence for overt detection of hyper-realistic masks among real face photos, and little evidence of covert detection. Experiment 2 (Japan; n = 60) extended these findings to different masks, mask-wearers and participant pools. In Experiment 3 (UK and Japan; n = 407), passers-by failed to notice that a live confederate was wearing a hyper-realistic mask and showed limited evidence of covert detection, even at close viewing distance (5 vs. 20 m). Across all of these studies, viewers accepted hyper-realistic masks as real faces. Specific countermeasures will be required if detection rates are to be improved

    Retrieving Photorecombination Cross Sections of Atoms from High-Order Harmonic Spectra

    Get PDF
    We observe high-order harmonic spectra generated from a thin atomic medium, Ar, Kr, and Xe, by intense 800-nm and 1300-nm femtosecond pulses. A clear signature of a single-atom response is observed in the harmonic spectra. Especially in the case of Ar, a Cooper minimum, reflecting the electronic structure of the atom, is observed in the harmonic spectra. We successfully extract the photorecombination cross sections of the atoms in the field-free condition with the help of an accurate recolliding electron wave packet. The present protocol paves the way for exploring ultrafast imaging of molecular dynamics with attosecond resolution
    corecore