229 research outputs found

    Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes

    Full text link
    Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels (between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuniform distribution of tubes are evaluated. The energy of a single particle state is the sum of a discrete transverse energy Et (that depends on the radii of neighboring tubes) and a quasicontinuous energy Ez of relatively free motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest energy states, the focus of this study. The transverse energy attains a global minimum value (Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The density of states N(E) near the lowest energy is found to vary linearly above this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there occurs a Bose-Einstein condensation of the molecules into the channel with the lowest transverse energy. The transition is characterized approximately as that of a four dimensional gas, neglecting the interactions between the adsorbed particles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this transition depends on the sample having a relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure

    Geografischer / Streckentechnischer Bremsscheibenverschleiß der ÖBB Personentriebzugflotte Rh 5022 (Desiro)

    Get PDF
    Die vorliegende Arbeit befasst sich mit der unterschiedlichen Abnützung von Bremsscheiben einer regional eingesetzten Personentriebzugflotte (Desiro) der österreichischen Bundesbahnen. Das Hauptziel der Arbeit ist, den vorhandenen Bremsscheibenverschleiß regional zu erkennen, um diesen mit Maßnahmen kostengünstig zu optimieren. In der Arbeit werden drei Regionen (Linz, Graz und Villach) hinsichtlich Streckenlänge, Höhenmeter- und Haltestellenanzahl verglichen. Diese Auswertungen bilden die Basis für in dieser Arbeit diskutierte Optimierungsmöglichkeiten

    Molecular-dynamics simulations of the dynamical excitations in commensurate submonolayer films of nitrogen molecules on graphite

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.54.14077 DOI:10.1103/PhysRevB.54.14077The dynamics of commensurate submonolayer solids of N2 molecules adsorbed on the basal planes of graphite have been studied using molecular-dynamics simulations. The calculations yielded the temperature dependence of the Brillouin-zone-center gap in the acoustic-phonon branches, for comparison with inelastic neutron-scattering experiments on the submonolayer solid. The calculated frequency gap was the same in submonolayer and monolayer films at low temperatures. At intermediate temperatures, the diffusive molecular motion associated with the presence of vacancies caused the gap mode to be less clearly defined in the coherent scattering function. Diffusion constants are calculated at submonolayer coverages, and temperatures up to 40 K for a population of molecules identified as mobile.This work was partially supported by the National Science Foundation under Grant No. DMR-9314235 (H.T.) and Nos. DMR-9120199 and DMR-9423307 (L.W.B.) and by The Danish Natural Science Foundation (F.Y.H.). L.W.B. thanks the Fysisk-Kemisk Institut and the Technical University of Denmark for hospitality during the period this work was completed

    The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility

    Get PDF
    Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks chemokine-induced cell migration and cytoskeletal rearrangements. Using live cell imaging, we demonstrate that USP17 is required for both elongated and amoeboid motility, in addition to chemotaxis. USP17 has previously been reported to disrupt Ras localization and we now find that USP17 depletion blocks chemokine-induced subcellular relocalization of GTPases Cdc42, Rac and RhoA, which are GTPases essential for cell motility. Collectively, these results demonstrate that USP17 has a critical role in cell migration and may be a useful drug target for both inflammatory and metastatic disease

    Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys

    Get PDF
    B lymphocyte stimulator (BLyS, also indicated as BAFF (B-cell activating factor) and CD257), and A Proliferation Inducing Ligand (APRIL, CD256) are two members of the TNF superfamily with a central role in B cell survival. Antibodies against these factors have potential therapeutic relevance in autoimmune inflammatory disorders with a proven pathogenic contribution of B cells, such as multiple sclerosis (MS). In the current study we performed a multi-parameter efficacy comparison of monoclonal antibodies against human anti-BLyS and anti-APRIL in a common marmoset (Callithrix jacchus) model of experimental autoimmune encephalomyelitis (EAE). A MS-like disease was induced by immunization with recombinant human myelin/oligodendrocyte glycoprotein (rhMOG) in complete Freund's adjuvant. The results show that the anti-BLyS and anti-APRIL antibody cause significant depletion of circulating CD20+ B cells, but a small subset of CD20 + CD40highB cells was not depleted. Induction of CD20+ B cell depletion from lymph nodes was only observed in the anti-BLyS treated monkeys. Both antibodies had a significant inhibitory effect on disease development, but all monkeys developed clinically evident EAE. Anti-BLyS treated monkeys were sacrificed with the same clinical signs as saline-treated monkeys, but nevertheless displayed significantly reduced spinal cord demyelination. This effect was not observed in the anti-APRIL treated monkeys. The two antibodies had a different effect on T cell subset activation and the profiles of ex vivo released cytokines. In conclusion, treatment with anti-BLyS and anti-APRIL delays the development of neurological disease in a relevant preclinical model of MS. The two mAbs achieve this effect via different mechanisms

    Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells

    Get PDF
    IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1-3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B ( commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT(2)PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases

    Thioredoxin-binding protein-2 (TBP-2/VDUP1/TXNIP) regulates T-cell sensitivity to glucocorticoid during HTLV-I-induced transformation

    Get PDF
    Although glucocorticoid (GC) is widely used for treating hematopoietic malignancies including adult T-cell leukemia (ATL), the mechanism by which leukemic cells become resistant to GC in the clinical course remains unclear. Using a series of T-cell lines infected with human T lymphotropic virus type-I (HTLV-I), the causative virus of ATL, we have dissected the transformation from interleukin (IL)-2-dependent to -independent growth stage. The transformation associates the loss of thioredoxin-binding protein-2 (TBP-2), a tumor suppressor and regulator of lipid metabolism. Here we show that TBP-2 is responsible for GC-induced apoptosis in ATL cells. In the IL-2-dependent stage, dexamethasone induced TBP-2 expression and apoptosis, both of which were blocked by GC receptor (GR) antagonist RU486. Knockdown of TBP-2 consistently reduced the amount of GC-induced apoptosis. In IL-2-independent stage, however, expression of GR and TBP-2 was suppressed and GC failed to induce apoptosis. Forced expression of GR led the cells to mild sensitivity to GC, which was also accomplished by treatment with suberoylanilide hydroxamic acid, a TBP-2 inducer. A transfection experiment showed that TBP-2 expression induced apoptosis in IL-2-independent ATL cells. Thus, TBP-2 is likely to be one of the key molecules for GC-induced apoptosis and a potential target for treating the advanced stage of ATL

    The Janus kinases (Jaks)

    Get PDF
    The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs
    corecore