53 research outputs found

    ARTICLE A Phanerozoic Time Chart for Canada

    No full text

    Logan Medallist 3. Making Stratigraphy Respectable: From Stamp Collecting to Astronomical Calibration

    Get PDF
    The modern science of stratigraphy is founded on a nineteenth-century empirical base – the lithostratigraphy and biostratigraphy of basin-fill successions. This stratigraphic record comprises the most complete data set available for reconstructing the tectonic and climatic history of Earth. However, it has taken two hundred years of evolution of concepts and methods for the science to evolve from what Ernest Rutherford scornfully termed “stamp collecting” to a modern dynamic science characterized by an array of refined methods for documenting geological rates and processes.    Major developments in the evolution of the science of stratigraphy include the growth of an ever-more precise geological time scale, the birth of sedimentology and basin-analysis methods, the influence of plate tectonics and, most importantly, the development, since the late 1970s, of the concepts of sequence stratigraphy. Refinements in these concepts have required the integration of all pre-existing data and methods into a modern, multidisciplinary approach, as exemplified by the current drive to apply the retrodicted history of Earth’s orbital behaviour to the construction of a high-precision ‘astrochronological’ time scale back to at least the Mesozoic record.    At its core, stratigraphy, like much of geology, is a field-based science. The field context of a stratigraphic sample or succession remains the most important starting point for any advanced mapping, analytical or modeling work.RÉSUMÉLa science moderne de la stratigraphie repose sur une base empirique du XIXe siècle, soit la lithostratigraphie et la biostratigraphie de successions de remplissage de bassins sédimentaires.  Cette archive stratigraphique est constituée de la base de données la plus complète permettant de reconstituer l’histoire tectonique et climatique de la Terre.  Cela dit, il aura fallu deux cents ans d’évolution des concepts et des méthodes pour que cette activité passe de l’état de « timbromanie », comme disait dédaigneusement Ernest Rutherford, à l’état de science moderne dynamique caractérisée par sa panoplie de méthodes permettant de documenter les rythmes et processus géologiques.   Les principaux développements de l’évolution de la science de la stratigraphie proviennent de l’élaboration d’une échelle géologique toujours plus précise, l’avènement de la sédimentologie et des méthodes d’analyse des bassins, de l’influence de la tectonique des plaques et, surtout du développement depuis la fin des années 1970, des concepts de stratigraphie séquentielle.  Des raffinements dans ces concepts ont nécessité l'intégration de toutes les données et méthodes existantes dans une approche moderne, multidisciplinaire, comme le montre ce mouvement actuel qui entend utiliser la reconstitution de l’histoire du comportement orbital de la Terre pour l’élaboration d’une échelle temporelle « astrochronologique » de haute précision, remontant jusqu’au Mésozoïque au moins.     Comme pour la géologie, la stratigraphie est une science de terrain.  Le contexte de terrain d’un échantillon stratigraphique ou d’une succession demeure le point de départ le plus important, pour tout travail sérieux de cartographie, d’analyse ou de modélisation

    Secular changes in sedimentation systems and sequence stratigraphy

    Get PDF
    The ephemeral nature of most sedimentation processes and the fragmentary character of the sedimentary record are of first-order importance. Despite a basic uniformity of external controls on sedimentation resulting in markedly similar lithologies, facies, facies associations and depositional elements within the rock record across time, there are a number of secular changes, particularly in rates and intensities of processes that resulted in contrasts between preserved Precambrian and Phanerozoic successions. Secular change encompassed (1) variations in mantle heat, rates of plate drift and of continental crustal growth, the gravitational effects of the Moon, and in rates of weathering, erosion, transport, deposition and diagenesis; (2) a decreasing planetary rotation rate over time; (3) no vegetation in the Precambrian, but prolific microbial mats, with the opposite pertaining to the Phanerozoic; (4) the long-term evolution of the hydrosphere-atmosphere-biosphere system. A relatively abrupt and sharp turning point was reached in the Neoarchaean, with spikes in mantle plume flux and tectonothermal activity and possibly concomitant onset of the supercontinent cycle. Substantial and irreversible change occurred subsequently in the Palaeoproterozoic, whereby the dramatic change from reducing to oxidizing volcanic gases ushered in change to an oxic environment, to be followed at ca. 2.4-2.3. Ga by the "Great Oxidation Event" (GOE); rise in atmospheric oxygen was accompanied by expansion of oxygenic photosynthesis in the cyanobacteria. A possible global tectono-thermal "slowdown" from ca. 2.45-2.2. Ga may have separated a preceding plate regime which interacted with a higher energy mantle from a ca. 2.2-2.0. Ga Phanerozoic-style plate tectonic regime; the "slowdown" period also encompassed the first known global-scale glaciation and overlapped with the GOE. While large palaeodeserts emerged from ca. 2.0-1.8. Ga, possibly associated with the evolution of the supercontinent cycle, widespread euxinia by ca. 1.85. Ga ushered in the "boring billion" year period. A second time of significant and irreversible change, in the Neoproterozoic, saw a second major oxidation event and several low palaeolatitude Cryogenian (740-630. Ma) glaciations. With the veracity of the "Snowball Earth" model for Neoproterozoic glaciation being under dispute, genesis of Pre-Ediacaran low-palaeolatitude glaciation remains enigmatic. Ediacaran (635-542. Ma) glaciation with a wide palaeolatitudinal range contrasts with the circum-polar nature of Phanerozoic glaciation. The observed change from low latitude to circum-polar glaciation parallels advent and diversification of the Metazoa and the Neoproterozoic oxygenation (ca. 580. Ma), and was succeeded by the Ediacaran-Cambrian transition which ushered in biomineralization, with all its implications for the chemical sedimentary record. © 2012 International Association for Gondwana Research.Patrick G. Eriksson, Santanu Banerjee, Octavian Catuneanu, Patricia L. Corcoran, Kenneth A. Eriksson, Eric E. Hiatt, Marc Laflamme, Nils Lenhardt, Darrel G.F. Long, Andrew D. Miall, Michael V. Mints, Peir K. Pufahl, Subir Sarkar, Edward L. Simpson, George E. William

    Geoscience of Climate and Energy 13. The Environmental Hydrogeology of the Oil Sands, Lower Athabasca Area, Alberta

    Get PDF
    Shallow fresh groundwater and deep saline groundwater are used together with surface water in the extraction of bitumen from the Athabasca Oil Sands both in the surface mining and in situ operations. However, increasing efficiencies in processing technologies have reduced water use substantially and currently at least 75% of the water used in most operations is recycled water. Much concern has been expressed regarding contamination of surface waters by seepage from tailings ponds, but hydrogeological studies indicate that this is not happening; that seepage capture design is effective. Oil sands mining and in situ project licensing and operation regulations include Environmental Impact Assessments that mandate considerable hydrogeological measurement and monitoring work. However, little of this is independently evaluated for accuracy or synthesized and interpreted for the public. Recent changes in Alberta environmental regulation, including the establishment of the Alberta Environmental Monitoring Management Board (in October 2012) are expected to bring new transparency to environmental management of Oil Sands operations.SOMMAIREOn utilise conjointement des eaux douce de faibles profondeur, des eaux souterraines salines profondes avec des eaux de surface dans l'extraction du bitume des sables bitumineux de l'Athabasca, tant dans le procédé d’extraction in situ qu’en surface.  Par ailleurs, l’accroissement de l'efficacité des technologies de traitement a considérablement réduit la consommation d'eau et, à l’heure actuelle, au moins 75% de l'eau utilisée dans la majorité des opérations est de l'eau recyclée.  Beaucoup d’inquiétude a été exprimée concernant la contamination des eaux de surface par la percolation des eaux des bassins de décantation des résidus, mais des études hydrogéologiques indiquent que ce n'est pas le cas, et que le concept de capture des infiltrations est efficace.  L’octroi de permis d’exploitation ainsi que les procédés d’exploitation des sables bitumineux, par extraction en surface ou in situ, comportent des évaluations d’impact sur les milieux de vie, est assorti de mandats élaborés de mesures hydrologiques et de suivi.  Cela dit, peu de ces mesures sont évaluées de manière indépendante quant à leur exactitude, leur mise en forme et leur interprétation pour le grand public.  Les changements récents dans la réglementation environnementale en Alberta, y compris la mise en place du Alberta Environmental Monitoring Management Board (en Octobre 2012) devraient aboutir à une nouvelle transparence de la gestion environnementale de l'exploitation des sables bitumineux.DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    Geoscience of Climate and Energy 10. The Alberta Oil Sands: Developing a New Regime of Environmental Management, 2010–2013

    Get PDF
        DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    Environmental Management of the Alberta Oil Sands: Introduction to the Special Set of Articles

    Get PDF
         DOI: http://dx.doi.org/10.12789/geocanj.2013.40.01

    A Phanerozoic Time Chart for Canada

    Get PDF
    • …
    corecore