3,020 research outputs found

    Neutral Currents in High-Energy Neutrino Collisions: An Experimental Search

    Get PDF
    A search for events with no final-state muon, as expected in the neutral-current interactions νμ(ν̅ μ)+N→νμ(ν̅ μ)+hadrons, has been carried out by using the California Institute of Technology-Fermilab neutrino detector and narrow-band neutrino beam. A clear signal of events with no apparent final-state muon has been observed. Furthermore, missing energy in the final state for these events provides strong evidence for the existence of a final-state ν

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    The Galactic Center: A Laboratory for Fundamental Astrophysics and Galactic Nuclei

    Full text link
    As the closest example of a galactic nucleus, the Galactic center presents an exquisite laboratory for learning about supermassive black holes (SMBH) and their environs. Detailed studies of stellar dynamics deep in the potential well of a galaxy, with exisiting and future large ground-based telescopes, offer several exciting directions in the coming decade. First, it will be possible to obtain precision measurements of the Galaxy's central potential, providing both a unique test of General Relativity (GR) and a detection of the extended dark matter distribution that is predicted to exist around the SMBH. Tests of gravity have not previously been possible on the mass scale of a SMBH. Similarly, only upper limits on the extended matter distribution on small scales currently exist; detection of dark matter on these scales is an important test of Lambda-CDM and the detection of stellar remnants would reveal a population that may dominate the stellar dynamics on the smallest scales. Second, our detailed view of the SMBH and its local gas and stellar environment provides insight into how SMBHs at the centers of galaxies form, grow and interact with their environs as well as on the exotic processes at work in the densest stellar clusters in the Universe. The key questions, still unanswered, of when and how SMBHs formed in the early universe, and the myriad ways in which feedback from SMBHs can affect structure formation, can be informed by directly observing the physical processes operating at the SMBH.Comment: An ASTRO2010 White Paper. Animations and high resolution images can be found at http://www.astro.ucla.edu/~ghezgroup/gc/pictures/Future_GCorbits.shtm

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Evaluating the Effectiveness of Grassbed Treatments as Habitat for Juvenile Black Bass in a Drawdown Reservoir

    Get PDF
    Many reservoirs in arid regions experience highly variable water levels caused by seasonal inflow fluctuations and designated outflow requirements. At Shasta Lake, California, managers plant cereal-grain grassbeds on exposed drawdown shorelines to increase juvenile fish habitat, localize productivity, and increase invertebrate fish prey. To determine the efficacy of these plantings, the abundance of juvenile black basses Micropterus spp. (20–55 mm standard length) and the amount of periphyton and macroinvertebrate prey were compared among three treatment types: (1) planted grassbeds of cereal barley Hordeum vulgare; (2) artificial rope grassbeds, which eliminated physical deterioration and nutrient release; and (3) nonplanted control sites with predominately sand and gravel substrates. In comparison with control areas, juvenile black bass abundance averaged 54 times higher in planted grassbeds and 230 times higher in artificial grassbeds. Periphyton (chlorophyll a) and benthic invertebrate biomass did not differ significantly between planted grassbeds and control sites. In artificial grassbeds, periphyton was more than two times the control levels, and benthic invertebrate biomass was more than 12 times the control levels. We conclude that the long-term availability of physical structure, rather than nutrient release associated with decomposition of grassbed materials, drives use and effectiveness of grassbed treatments. Future management decisions in drawdown reservoirs should emphasize increasing long-term availability and integrity of physical habitat for juvenile fishes in the littoral zone

    Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    Full text link
    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.Comment: 42 pages, 18 figure

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
    • …