67 research outputs found

    Approximation Results for Preemptive Stochastic Online Scheduling

    Get PDF
    We present first constant performance guarantees for preemptive stochastic scheduling to minimize the sum of weighted completion times. For scheduling jobs with release dates on identical parallel machines we derive policies with a guaranteed performance ratio of 2 which matches the currently best known result for the corresponding deterministic online problem. Our policies apply to the recently introduced stochastic online scheduling model inwhich jobs arrive online over time. In contrast to the previously considered nonpreemptivesetting, our preemptive policies extensively utilize information on processing time distributions other than the first (and second) moments. In order to derive our results we introduce a new nontrivial lower bound on the expected value of an unknown optimal policy that we derive from an optimal policy for the basic problem on a single machine without release dates. This problem is known to be solved optimally by a Gittins index priority rule. This priority index also inspires the design of our policies.computer science applications;

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    How to Whack Moles.

    Get PDF

    Optimal Algorithms for Scheduling under Time-of-Use Tariffs

    Get PDF
    We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for.Comment: 17 pages; A preliminary version of this paper with a subset of results appeared in the Proceedings of MFCS 201

    Optimally Handling Commitment Issues in Online Throughput Maximization

    Get PDF