2,004 research outputs found

    Wearable Augmented Reality Application for Shoulder Rehabilitation

    Get PDF
    Augmented reality (AR) technology is gaining popularity and scholarly interest in the rehabilitation sector because of the possibility to generate controlled, user-specific environmental and perceptual stimuli which motivate the patient, while still preserving the possibility to interact with the real environment and other subjects, including the rehabilitation specialist. The paper presents the first wearable AR application for shoulder rehabilitation, based on Microsoft HoloLens, with real-time markerless tracking of the user’s hand. Potentialities and current limits of commercial head-mounted displays (HMDs) are described for the target medical field, and details of the proposed application are reported. A serious game was designed starting from the analysis of a traditional rehabilitation exercise, taking into account HoloLens specifications to maximize user comfort during the AR rehabilitation session. The AR application implemented consistently meets the recommended target frame rate for immersive applications with HoloLens device: 60 fps. Moreover, the ergonomics and the motivational value of the proposed application were positively evaluated by a group of five rehabilitation specialists and 20 healthy subjects. Even if a larger study, including real patients, is necessary for a clinical validation of the proposed application, the results obtained encourage further investigations and the integration of additional technical features for the proposed AR application

    Review of the Augmented Reality Systems for Shoulder Rehabilitation

    Get PDF
    Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications

    NEPA, a new fixed combination of netupitant and palonosetron, is a cost-effective intervention for the prevention of chemotherapy-induced nausea and vomiting in the UK

    Get PDF
    Background: The objective was to evaluate the cost-effectiveness of NEPA, an oral fixed combination netupitant (NETU, 300 mg) and palonosetron (PA, 0.5 mg) compared with aprepitant and palonosetron (APPA) or palonosetron (PA) alone, to prevent chemotherapy-induced nausea and vomiting (CINV) in patients undergoing treatment with highly or moderately emetogenic chemotherapy (HEC or MEC) in the UK. Scope: A systematic literature review and meta-analysis were undertaken to compare NEPA with currently recommended anti-emetics. Relative effectiveness was estimated over the acute (day 1) and overall treatment (days 1–5) phases, taking complete response (CR, no emesis and no rescue medication) and complete protection (CP, CR and no more than mild nausea [VAS scale <25 mm]) as primary efficacy outcomes. A three-health-state Markov cohort model, including CP, CR and incomplete response (no CR) for HEC and MEC, was constructed. A five-day time horizon and UK NHS perspective were adopted. Transition probabilities were obtained by combining the response rates of CR and CP from NEPA trials and odds ratios from the meta-analysis. Utilities of 0.90, 0.70 and 0.24 were defined for CP, CR and incomplete response, respectively. Costs included medications and management of CINV-related events and were obtained from the British National Formulary and NHS Reference Costs. The expected budgetary impact of NEPA was also evaluated. Findings: In HEC patients, the NEPA strategy was more effective than APPA (quality-adjusted life days [QALDs] of 4.263 versus 4.053; incremental emesis-free and CINV-free days of +0.354 and +0.237, respectively) and was less costly (£80 versus £124), resulting in NEPA being the dominant strategy. In MEC patients, NEPA was cost effective, cumulating in an estimated 0.182 extra QALDs at an incremental cost of £6.65 compared with PA. Conclusion: Despite study limitations (study setting, time horizon, utility measure), the results suggest NEPA is cost effective for preventing CINV associated with HEC and MEC in the UK

    β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Get PDF
    BACKGROUND: Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR) agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114) could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. METHODS: Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. RESULTS: In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. CONCLUSIONS: These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore